Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A procedure based on the Artificial Bee Colony algorithm for solving the two-phase axisymmetric one-dimensional inverse Stefan problem with the third kind boundary condition is presented in this paper. Solving of the considered problem consists in reconstruction of the function describing the heat transfer coefficient appearing in boundary condition of the third kind in such a way that the reconstructed values of temperature would be as closed as possible to the measurements of temperature given in selected points of the solid. A crucial part of the solution method consists in minimizing some functional which will be executed with the aid of one of the swarm intelligence algorithms - the ABC algorithm.
Czasopismo
Rocznik
Tom
Strony
27--32
Opis fizyczny
Bibliogr. 22 poz., tab., wykr.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, Gliwice, Poland
Bibliografia
- [1] Beni, G., Wang, J. (1989). Swarm Intelligence in Cellular Robotic Systems. In NATO Advanced Workshop on Robots and Biological Systems, 26-30 June 1989. Tuscany, Italy.
- [2] Karaboga, D. & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing 8, 687-697. DOI: 10.1016/j.asoc.2007.05.007.
- [3] Karaboga, D. & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214, 108-132. DOI: 10.1016/j.amc.2009.03.090.
- [4] Hetmaniok, E., Słota, D. & Zielonka, A. (2010). Solution of the inverse heat conduction problem by using the ABC algorithm. Lecture Notes in Computer Science 6086, 659–668. DOI: 10.1007/978-3-642-13529-3_70.
- [5] Hetmaniok, E., Słota, D. & Zielonka, A. (2012). Identification of the thermal conductivity coefficient by using the Artificial Bee Colony algorithm. Hutnik-Wiadomości hutnicze 79(1), 41-44.
- [6] Hetmaniok, E., Słota, D., Zielonka, A. & Wituła, R. (2012). Comparison of ABC and ACO Algorithms Applied for Solving the Inverse Heat Conduction Problem. Lecture Notes in Computer Science 7269, 249-257. DOI: 10.1007/978-3-642-29353-5_29.
- [7] Hetmaniok, E., Słota, D. & Zielonka, A. (2012) Application of the Ant Colony Optimization Algorithm for Reconstruction of the Thermal Conductivity Coefficient. Lecture Notes in Computer Science 7269, 240-248. DOI: 10.1007/978-3-642-29353-5_28.
- [8] Mendakiewicz, J. & Paruch, M. (2008). Application of evolutionary algorithm for cast iron latent heat identification. Archives of Foundry Engineering 8(4), 115-120.
- [9] Majchrzak, E. & Mendakiewicz, J. (2007). Gradient method of cast iron latent heat identification. Archives of Foundry Engineering 7(4), 121-126.
- [10] Mochnacki, B. & Suchy, J.S. (2006). Identification of alloy latent heat on the basis of mould temperature. Pt. 1. Archives of Foundry 6(22), 324-330.
- [11] Mochnacki, B., Pawlak, E. & Suchy, J.S. (2006). Identification of alloy latent heat on the basis of mould temperature. Pt. 2. Archives of Foundry 6(22), 331-337.
- [12] Liu, C.-S. (2011). Solving Two Typical Inverse Stefan Problems by Using the Lie-Group Shooting Method. International Journal of Heat Mass Transfer 54, 1941-1949. DOI: 10.1016/j.ijheatmasstransfer.2011.01.009.
- [13] Hinze, M. & Ziegenbalg, S. (2007). Optimal Control of the Free Boundary in a Two-Phase Stefan Problem. Journal of Computational Physics 223, 657-684. DOI: 10.1016/j.jcp.2006.09.030.
- [14] Ren, H.-S. (2007). Application of the Heat-Balance Integral to an Inverse Stefan Problem. International Journal of Thermal Sciences 46, 118-127. DOI: 10.1016/j.ijthermalsci.2006.04.013.
- [15] Nowak, I., Nowak, A.J. & Wrobel, L.C. (2002). Identification of Phase Change Fronts by Bezier Splines and BEM. International Journal of Thermal Sciences 41, 492-499. DOI: 10.1016/S1290-0729(02)01342-X.
- [16] Nowak, I., Nowak, A.J. & Wrobel, L.C. (2003). Inverse Analysis of Continuous Casting Processes. International Journal of Numerical Methods for Heat & Fluid Flow 13, 547-564. DOI: 10.1108/09615530910938416.
- [17] Słota, D. (2011). Solving Inverse Problems of Solidification with the Use of Genetic Algorithm. Gliwice: Silesian University of Technology Press (in Polish).
- [18] Piasecka Belkhayat, A. (2008). Numerical modeling of solidification process using interval boundary element method. Archives of Foundry Engineering 8(4), 171-176.
- [19] Sczygiol, A. & Dyja, R. (2007) Evaluating the influence of selected parameters on sensitivity of a numerical model of solidification. Archives of Foundry Engineering 7(4), 159-164.
- [20] Sowa, L. & Bokota, A. (2007). Numerical modeling of thermal and fluid flow phenomena in the mould channel. Archives of Foundry Engineering 7(4), 165-168.
- [21] Piekarska, W., Kubiak, M. & Bokota, A. (2011). Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint. Archives of Metallurgy and Materials 56, 409-421. DOI: 10.2478/v10172-011-0044-6.
- [22] Mochnacki, B., Suchy, J.S. (1995). Numerical methods in computations of foundry processes, Kraków: PFTA.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38e14218-3346-4703-b177-9782b0d7082b