Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a model of fishery management, where n agents exploit a single population with strictly concave continuously differentiable growth function of Verhulst type. If the agent actions are coordinated and directed towards the maximization of the discounted cooperative revenue, then the biomass stabilizes at the level, defined by the well known “golden rule”. We show that for independent myopic harvesting agents such optimal (or ε-optimal) cooperative behavior can be stimulated by the proportional tax, depending on the resource stock, and equal to the marginal value function of the cooperative problem. To implement this taxation scheme we prove that the mentioned value function is strictly concave and continuously differentiable, although the instantaneous individual revenues may be neither concave nor differentiable.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--27
Opis fizyczny
Bibliogr. 29 poz., wzory
Twórcy
autor
- Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Mil’chakova str., 8a, 344090, Rostov-on-Don, Russian Federation
autor
- Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Mil’chakova str., 8a, 344090, Rostov-on-Don, Russian
Bibliografia
- [1] C. D. Aliprantis and K. C. Border: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin, 2006.
- [2] R. Arnason: Fisheries management and operations research. European J. of Operational Research, 193(3), (2009), 741-751.
- [3] S. M. Aseev and A. V. Kryazhimskii: On a class of optimal control problems arising in mathematical economics. Proc. of the Steklov Institute of Mathematics, 262(1), (2008), 10-25.
- [4] M. Bardi and I. Capuzzo-Dolcetta: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston, 1997.
- [5] G. Birkhoff and G.-C. Rota: Ordinary Differential Equations. Wiley, New York, 1989.
- [6] C. W. Clark: Mathematical models in the economics of renewable resources. SIAM Review, 21(1), (1979), 81-99.
- [7] C. W. Clark: Towards a predictive model for the economic regulation of commercial fisheries. Canadian J. of Fisheries and Aquatic Sciences, 37(7), (1980), 1111-1129.
- [8] C. W. Clark: The Worldwide Crisis in Fisheries. Economic Models and Human Behavior. Cambridge University Press, Cambridge, 2006.
- [9] M. G. Crandall and R. Newcomb: Viscosity solutions of Hamilton-Jacobi equations at the boundary. Proc. of the American Mathematical Society, 94(2), (1985), 283-2903.
- [10] A. V. Dmitruk and N. V. Kuz’kina: Existence theorem in the optimal control problem on an infinite time interval. Mathematical Notes, 78(4), (2005), 466-480.
- [11] H. S. Gordon: The economic theory of a common-property resource: the fishery. J. of Political Economy, 62(2), (1954), 124-142.
- [12] N. Hanley, J. F. Shogren and B. White: Environmental Economics in Theory and Practice. Macmillan Education UK, London, 1997.
- [13] G. Hardin: The tragedy of the commons. Science, 162 1243-1248, (1968).
- [14] J.-B. Hiriart-Urruty and C. Lemaré: Fundamentals of Convex Analysis. Springer, Berlin, 2001.
- [15] V. G. Il’ichev: Stability, Adaptation and Control in Ecological Systems. Fizmatlit, Moscow, 2009.
- [16] A. D. Ioffe and V. M. Tihomirov: Theory of Extremal Problems. North- Holland, Amsterdam, 1979.
- [17] H. Ishii and S. Koike: On ε-optimal controls for state constraint problems. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 17(4), (2000), 473-502.
- [18] N. N. Krasovskii and A. I. Subbotin: Game-Theoretical Control Problems. Springer, New York, 1988.
- [19] N. V. Long: Dynamic games in the economics of natural resources: A survey. Dynamic Games and Applications, 1(1), (2011), 115-148.
- [20] R. Mckelvey: Common property and the conservation of natural resources. In: S. A. Levin, T. G. Hallam and L. J. Gross (Eds.) Applied Mathematical Ecology, 58-80. Springer, Berlin, 1989.
- [21] B. G. Pachpatte: Inequalities for Differential and Integral Equations. Academic Press, San Diego, 1998.
- [22] J. P. Rincon-Zapatero and M. S. Santos: Differentiability of the value function in continuous-time economic models. J. of Mathematical Analysis and Applications, 394(1), (2012), 305-323.
- [23] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1970.
- [24] R. T. Rockafellar and R. J.-B. Wets: Variational analysis. Springer-Verlag, Berlin, 2009.
- [25] D. B. Rokhlin: The derivative of the solution to the Bellman functional equation and the value of bioresources. Sibirskii Zhurnal Industrial’noi Matematiki, 3(1(5)), (2000), 169-181.
- [26] H. M. Soner: Optimal control with state-space constraint. I. SIAM J. on Control and Optimization, 24(3), (1986), 552-561.
- [27] S. M. Srivastava: A Course on Borel Sets. Springer-Verlag, New York, 1998.
- [28] T. Strömberg: The operation of infimal convolution. Dissertationes Mathematicae, 352 (1996), 1-58.
- [29] A. Villani: On Lusin’s condition for the inverse function. Rendiconti del Circolo Matematico di Palermo, 33(3), (1984), 331-335.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38dd8681-bc48-4ba3-a5d9-7d074c079886