PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Osseointegration properties of domestic bioactive calcium phosphate ceramics doped with silicon

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The relevance of this study lies in the fact, that today the search for biocompatible materials for the management of bone defects is of importance. Such materials could become an alternative to transplants. For the replacement of bone defects, two-phasic bioactive ceramics of hydroxyapatite and β-tricalcium phosphate is a very attractive biomaterial due to its excellent biocompatibility and osteoconductivity, but the results of its use are quite controversial due to insufficient bioactivity. The purpose of this work is to investigate the osseointegration properties of two-phase bioactive ceramics doped with silicon (HTdSi), both as a single component and a component in combination with platelet-rich fibrin, as well as in comparison with the well-known imported analogue – BIO, which consists of β- tricalcium phosphate, also as an independent component and a component in combination with platelet-rich fibrin. In the experiment, the rabbits of the New Zealand white breed at the age of 3 months and with an average weight of 2.5 kg were used. The terms of implantation are 30, 60, 90 and 180 days. The advantages of the domestic bio-composite are substantiated on the basis of clinical, radiological and histological studies. Material and methods: In the experiment, the rabbits of the New Zealand white breed at the age of 3 months and with an average weight of 2.5 kg were used. The terms of implantation are 30, 60, 90 and 180 days. Results: The osteointegration properties of two-phase bioactive ceramics doped with silicon (HTdSi), both as a single component and in combination with platelet fibrin, were investigated, as well as in comparison with the known imported analog - BIO, which contains β-tricalcium phosphate, both as a single component and in combination with platelet fibrin. Conclusions: The advantages of domestic biocomposite are substantiated on the basis of clinical, radiological and histological studies.
Rocznik
Strony
113--129
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Department of Traumatology and Orthopaedics of Adults, Institute of Traumatology and Orthopaedics of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • Department of Physics of Strength and Plasticity of Materials, Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Department of Physics of Strength and Plasticity of Materials, Frantsevich Institute for Problems of Materials Science of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Department of Surgery and Small Animal Diseases, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine
  • Department of Surgery and Small Animal Diseases, Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine
Bibliografia
  • 1. Xin H, Xu L, Yuli S, Feng Q, Gang C. Current Trends in Research on Bone Regeneration: A Bibliometric Analysis. Biomed Res Int. 2020: 8787394. https://doi.org/10.1155/2020/8787394
  • 2. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004;69(3):490-501. https://doi.org/10.1002/jbm.a.30022
  • 3. Guoke T, Zhiqin L, Jiangming Yu, Xing W, Zhihong T, Xiaojian Y. 2021. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. https://doi.org/10.3389/fcell.2021.665813
  • 4. Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137-1158. https://doi.org/10.1098/rsif.2008.0151
  • 5. Gloivacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg. 1985;12(2):233-241. https://doi.org/10.1016/S0094-1298(20)31694-1
  • 6. Buck BE, Malinin TI, Brown MD. 1989. Bone transplantation and human immunodeficiency virus. An estimate of risk of aquired immunodeficiency syndrome. Clin Orthop Relat Res. 1989;(240):129-136.
  • 7. Ziman ZZ. Calcium phosphate biomaterials. KhNU named after VN Karazin; 2018.
  • 8. Barinov SM, Komlev VS. Bioceramics based on calcium phosphates. Nauka; 2005.
  • 9. Slutsky L, Vetra Y. Biological issues of biomaterials science. Latvian Medical Academy; 2001.
  • 10. Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963-977. https://doi.org/10.1016/j.actbio.2011.09.003
  • 11. Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials (Basel). 2013;6(9):3840-3942. https://doi.org/10.3390/ma6093840
  • 12. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14(1):65-88. https://doi.org/10.1016/0267-6605(93)90049-d
  • 13. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;(395):81-98. https://doi.org/10.1097/00003086-200202000-00009
  • 14. Nathanael JA, Oyane A, Nakamura M, Koga K, Nishida E, Tanaka S, Miyaji H. Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process. Heliyon. 2018;4(8):e00734. https://doi.org/10.1016/j.heliyon.2018.e00734
  • 15. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014 20;5(3):108-114.
  • 16. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101. https://doi.org/10.1586/17434440.2.1.87
  • 17. Narayan RJ. The next generation of biomaterial development. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1917):1831-1837. https://doi.org/10.1098/rsta.2010.0001
  • 18. Uvarova IV, Gorbik PP, Gorobets SV, Ivashchenko OA, Ulyanchich NV. Nanomaterials for medical purposes. Naukova Dumka; 2014.
  • 19. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19(1-3):133-139. https://doi.org/10.1016/s0142-9612(97)00180-4
  • 20. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037-8045. https://doi.org/10.1016/j.actbio.2013.06.014
  • 21. Muñoz‑Corcuera M, Bascones‑Martínez A, Ripollés RJ. Post‑extraction application of beta tricalcium phosphate in alveolar socket. J Osseointegration. 2015;7(1):8‑14. https://doi.org/10.23805/jo.2015.07.01.02
  • 22. Habibovica P, Yuanb H, Van Der Valkb СM, Meijerc G, Van Blitterswijka CA, De Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26(17):3565-3575. https://doi.org/10.1016/j.biomaterials.2004.09.056
  • 23. Liu B, Lun DX. 2012. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4(3):139-144. https://doi.org/10.1111/j.1757-7861.2012.00189.x
  • 24. Ezzahmouly M, Elmoutaouakkil A, Ed-Dhahraouy M, Khallok H, Elouahli A, Mazurier A, ElAlbani A, Hatim Z. Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations. Heliyon. 2019;5(12):e02557. https://doi.org/10.1016/j.heliyon.2019.e02557.
  • 25. Truite CVR, Noronha JNG, Prado GC, Santos LN, Palácios RS, Do Nascimento A, et al. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with Cyclodextrin in Bone Regeneration. Biomolecules. 2022;12(3):383. https://doi.org/10.3390/biom12030383
  • 26. Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical. Materials (Basel). 2017;10(4):334. https://doi.org/10.3390/ma10040334
  • 27. Ebrahimi M. Biomimetic principle for development of nanocomposite biomaterials in tissue engineering. In: Inamuddin AM, Asiri AM, ed. Applications of Nanocomposite Materials in Orthopedics. Woodhead; 2018:287-306.
  • 28. Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, Pan H, Xu X, Tang R. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. J. Mater. Chem. 2007;17:4690-4698. https://doi.org/10.1039/B710936A
  • 29. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed Engl. 2002;41(17):3130-3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  • 30. Astala R, Calderin I, Yin X, Stott MJ. Ab initio simulation of Si-doped hydroxyapatite. Chem Mater. 2005;18(2):413-422. https://doi.org/10.1021/cm051989x
  • 31. Rau JV, Cacciotti I, Laureti S, Fosra M, Varvaro G, Latini A. Bioactive, nanostructured Si-substituted hydroxyapatite coatings on titanium prepared by pulsed laser deposition. J Biomed Mater Res B Appl Biomater. 2015;103(8):1621-1631. https://doi.org/10.1002/jbm.b.33344
  • 32. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicatesubstituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27(29):5014-5026. https://doi.org/10.1016/j.biomaterials.2006.05.039
  • 33. Szurkowska K, Szeleszczuk L, Kolmas J. Effects of Synthesis Conditions on the Formation of Si-Substituted Alpha Tricalcium Phosphates. Int J Mol Sci. 2020;21(23):9164. https://doi.org/10.3390/ijms21239164
  • 34. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279-280. https://doi.org/10.1126/science.167.3916.279
  • 35. Tavafoghi M, Kinsella JM, Gamys CG, Gosselin M, Zhao YF. Silicon-doped hydroxyapatite prepared by a thermal technique for hard tissue engineering applications. Ceram Int. 2018;44(15):17612-17622. https://doi.org/10.1016/j.ceramint.2018.06.071
  • 36. Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Dulian P, et al. Mechanochemical synthesis and investigations of calcium titanate powders and their acrylic dispersions. J Eur Ceram Soc. 2014;34(10):2259-2264. https://doi.org/10.3390/ma13153275
  • 37. Sahalevych AI, Sergiychuk RV, Ozhohin VV, Khrapchuk AYu, Dubovyi YO, Frolov OS. The Modified Procedure of Totally Tubeless PNL. Int J Biol Biomed Engin. 2022;16:82-89. https://doi.org/10.46300/91011.2022.16.10
  • 38. Sobczak-Kupiec A, Olender E, Malina D, Tyliszczak B. Effect of calcination parameters on behavior of bone hydroxyapatite in artificial saliva and its biosafety. Mater Chem Phys. 2018;206:158-165. https://doi.org/10.1016/j.matchemphys.2017.12.020
  • 39. Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res A. 2004;69(4):670-679. https://doi.org/10.1002/jbm.a.30035
  • 40. Sahalevych A, Sergiychuk R, Ozhohin V, Vozianov O, Khrapchuk A, Dubovyi Y, Frolov O. Mini-percutaneous nephrolithotomy in surgery of Nephrolithiasis. Ukrain J Nephrol Dialys. 2021;(3):44-52.
  • 41. Sobczak-Kupiec A, Malina D, Tyliszczak B, Piatkowski M, Bialik-Was K, Wzorek Z. Evaluation of bioactivity of Poly(Acrylic acid) - hydroxyapatite - nanogold composites in in vitro conditions. Digest J Nanomat Biostruct. 2012;7(2):459-467.
  • 42. Tang Q, Brooks R, Rushton N, Best S. Production and characterization of HA and SiHA coatings. J Mater Sci Mater Med. 2010;21(1):173-181. https://doi.org/10.1007/s10856-009-3841-y
  • 43. Tyliszczak B, Pielichowski K. Novel hydrogels containing nanosilver for biomedical applications - Synthesis and characterization. J Polym Res. 2013;20(7):191. https://doi.org/10.1007/s10965-013-0191-8
  • 44. Polatova DSh, Islamov UF, Davletov RR, Savkin AV, Sharipov MM. Oncologic outcomes of pelvic bone sarcomas surgical. Int J Health Sci. 2021;5(3):252-259. https://doi.org/10.53730/ijhs.v5n3.1467
  • 45. Navruzov SN, Polatova DSh, Gafoor-Akhunov MA, Gabdikarimov KH. The value of marker proteins p53, bcl-2, Ki-67 in predicting the effectiveness of treatment for osteogenic sarcoma of tubular bones. Vopr Onkol. 2012;58(5):691-693.
  • 46. Das S, Jhingran R, Bains VK, Madan R, Srivastava R, Rizvi I. Socket preservation by beta-tri-calcium phosphate with collagen compared to platelet-rich fibrin: A clinico-radiographic study. Eur J Dent. 2016;10(2):264-276. https://doi.org/10.4103/1305-7456.178298.
  • 47. Sakibaev KS, Nikityuk DB, Alekseyeva NT, Klochkova SV, Tashmatova NM. Characteristics of muscle mass in women of different constitutions. Res J Pharm Technol. 2019;12(12):6193-7.
  • 48. Takahashi Y, Marukawa E, Omura K. 2013. Application of a new material (ß‑TCP/collagen composites) in extraction socket preservation. Int J Oral Maxillofac Implants. 2013;28(2):444-452. https://doi.org/10.11607/jomi.2794
  • 49. Gadipelly S, Sultana S, Venkatesh VV, Praveen P. Comparative Radiological Analysis of Efficacy of Beta-tricalcium Phosphate and Beta-tricalciumPhosphate with Platelet-rich Fibrin in MaxillarySinus Augmentation – A Clinical Study. Indian J Dent Adv. 2019; 10(4):171-175. https://doi.org/10.5866/2018.10.10171
  • 50. Elmohandes W. Evaluation of beta tricalcium phosphate mixed with platelet rich fibrin for rehabilitation of atrophic maxilla with implant installation. J Oral Maxillofac. Surg. 2013;42(10):1261. https://doi.org/10.1016/j.ijom.2013.07.303
  • 51. Alan H, Kavak G, Nergiz Y, Tunik S, Yavuz I. Comparative Investigation of The Effects of Platelet-Rich Plasma in Sinus Lifting. IAMR. 2015;7(2):1-12.
  • 52. Simonpieri A, Del Corso M, Sammartino G, Dohan Ehrenfest DM. The relevance of Choukroun’s platelet‑rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: a new grafting protocol. Implant Dent. 2009;18(2):102-111. https://doi.org/10.1097/ID.0b013e318198cf00
  • 53. Dmytriiev D, Dmytriiev K, Stoliarchuk O, Semenenko A. Multiple organ dysfunction syndrome: What do we know about pain management? A narrative review. Anaesth Pain Intensive Care. 2019;23(1):84-91.
  • 54. Serniak YP, Sagalevych AI, Frolov OS, Serniak PY, Kryvopustov MS. Extraperitoneoscopic radical prostatectomy after pelvic sugery procedures. Wiad Lek. 2020;73(6):1093-1096.
  • 55. Peleg M, Garg AK, Mazor Z. Predictability of simultaneous implant placement in the severely atrophic posterior maxilla. Int J Oral Maxillofac Implants. 2006;21(1):94-102.
  • 56. Barhate UH, Mangaraj M, Jena AK, Sharan J. Applications of Platelet Rich Fibrin in Dental Surgery. Trends Biomater Artif Organs. 2021;35(2):203-213.
  • 57. Simon BI, Zatcoff AL, Kong JJ, O’Connell SM. Clinical and histological comparison of extraction socket healing following the use of autologous platelet‑rich fibrin matrix (PRFM) to ridge preservation procedures emploting demineralized freeze-dried bone allograft material and membrane. Open Dent J. 2009;3:92-99. https://doi.org/10.2174/1874210600903010092
  • 58. Choukroun J, Diss A, Simonpieri A, Girard MO, Schoeffler C, Dohan SL, Dohan AJJ, Mouhyi J, Dohan DM. Platelet‑rich fibrin (PRF): A second‑generation platelet concentrate: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):299-303. https://doi.org/10.1016/j.tripleo.2005.07.012
  • 59. Gupta SJ, Jhingran R, Gupta V, Bains VK, Madan R, Rizvi I. Efficacy of platelet‑rich fibrin vs. enamel matrix derivative in the treatment of periodontal intrabony defects. J Int Acad Periodontol. 2014;16(3):86-96.
  • 60. Mathur A, Bains VK, Gupta V, Jhingran R, Singh GP. Evaluation of intrabony defects treated with platelet‑rich fibrin or autogenous bone graft. Eur J Dent. 2015;9(1):100-108. https://doi.org/10.4103/1305-7456.149653
  • 61. Gupta V, Bains VK, Singh GP, Mathur A, Bains R. Regenerative potential of platelet rich fibrin in dentistry: literature review. AJOHAS. 2011;1(1):22‑28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38db54f6-dbda-47a5-a3b0-f3ccf5fa8d5a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.