PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First record of tempestites from Quaternary lacustrine deposits in the Ağrı Basin (Eastern Anatolia, Türkiye) : palaeoclimatological and palaeogeographic implications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several event layers have been identified in lacustrine deposits in the AErI Basin of Anatolia (E Türkiye). Sedimentological and palaeontological data newly indicate a storm-induced origin for some of them. The sedimentary structures in three sections, a few tens of metres apart from each other laterally, such as hummocky cross-stratification, wave-generated cross-bedding, parallel bedding, erosional surfaces, and graded bedding, which are considered characteristic of tempestites, are clearly present. Additionally, fining-upwards units and biogenic escape structures located at different levels of these sections indicate a similar origin. The vertical variations in layer thickness, grain size, and sedimentary structures in these sedimentary sections indicate fluctuating hydrodynamic conditions during deposition, while lateral decrease in the size and wavelength of the structures reflects deepening. This interpretation of storm-induced deposition is compatible with regional palaeoclimatological and palaeogeographical data, and is supported by evidence of Quaternary storm-induced sedimentation in adjacent lacustrine basins in the region.
Rocznik
Strony
art. no. 13
Opis fizyczny
Bibliogr. 98 poz., fot., rys., wykr.
Twórcy
autor
  • Van Yüzüncü Yıl University, Department of Geological Engineering, TR-65080 Van, Türkiye
Bibliografia
  • 1. Aęlan, M., Oyan V., Köse, O., 2020. Petrogenesis and the evolution of Pliocene Timar basalts in the east of Lake Van, Eastern Anatolia, Turkey: a consequence of the partial melting of a metasomatized spinel-rich lithospheric mantle source. Journal of African Earth Sciences, 168: 103844: 1-18. https://doi.org/10.1016/j.jafrearsci.2020.103844
  • 2. Aigner, T., 1982. Calcareous tempestites: storm dominated stratification in upper Muschelkalk limestones. In: Cyclic and Event Stratification (eds. G. Einsele and A. Seilacher): 180-198. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-75829-4_13
  • 3. Aigner, T., Reineck, H.E., 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana Maritima, 14: 183-215.
  • 4. Allen, J.R.L., 1982. Sedimentary Structures, their Character and Physical Basis, II. Elsevier Scientific Publication, New York. Allen, P.A., 1981. Wave-generated structures in the Devonian lacustrine sediments of south-east Shetland and ancient wave conditions. Sedimentology, 28: 369-379.
  • 5. Alván, A., Von Eynatten, H., 2014. Sedimentary facies and stratigraphic architecture in coarse-grained deltas: anatomy of the Cenozoic Camaná Formation, southern Peru (16°25'S to 17°15'S). Journal of South American Earth Sciences, 54: 82-108. https://doi.org/10.1016/j.jsames.2014.04.008
  • 6. Arnott, R.W., Southard, J.B., 1990. Exploratory flow-duct experiments on combined-flow bed configurations, and some implications for interpreting storm-event stratification. Journal of Sedimentary Petrology, 60: 211-219. https ://doi.org/10.1306/212f9156-2b24-11 d7-8648000102c1865d
  • 7. Baarli, B.G., 1998. Silurian cycles and proximality-trend analysis of tempestite deposits. James Hall Centennial Volume, New York State Museum Bulletin, 491: 75-88.
  • 8. Ball, S.M., 1971. The Westphalian limestone of the northern midcontinent: a possible storm deposition. Journal of Sedimentary Petrology, 41: 217-232.
  • 9. Barron, E.J., 1989. Severe storms during Earth history. GSA Bulletin, 101: 601-612. https://doi.org/10.1130/0016-7606(1989)101<0601:Ssdeh>2.3.Co;2
  • 10. Bhattacharya, H.N., Bhattacharya, B., Chakraborty, I., Chakraborty, A., 2004. Sole marks in storm event beds in the Permo-Carboniferous Talchir Formation, Raniganj Basin, India. Sedimentary Geology, 166: 209-222. https://doi.org/10.1016/j.sedgeo.2003.12.003
  • 11. Bird, E.C.F., 1994. Physical setting and geomorphology of coastal lagoons. In: Coastal Lagoon Processes (ed. B. Kferfve): 9-39. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/s0422-9894(08)70007-2
  • 12. Boyd, R., Dalrymple, R., Zaitlin, B.A., 1992. Classification of clastic coasta depositional environments. Sedimentary Geology,80: 139-150. https://doi.org/10.1016/0037-0738(92)90037-R
  • 13. Bromley, R.G., Asgaard, U., 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord,East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 28: 39-80. doi: 10.1016/0031-0182(79)90112-3
  • 14. Buatois, L.A., Mángano, M.G., 2004. Ichnology of fluvio-lacustrine environments:animal-substrate interactions in freshwater ecosystems. Geological Society Special Publications, 228: 311-333. https://doi.org/10.1144/GSL.SP.2004.228.01.14
  • 15. Buatois, L.A., Mángano, M.G., 2009. Applications of ichnology in lacustrine sequence stratigraphy - potential and limitations: Palaeogeography, Palaeoclimatology, Palaeoecology, 272: 127-142. https://doi.org/10.1016/j.palaeo.2008.10.012
  • 16. Bussert, R., Aberhan, M., 2004. Storms and tsunamis: evidence of event sedimentation in the Late Jurassic Tendaguru Beds of southeastern Tanzania. Journal of African Earth Sciences, 39: 549-555. https://doi.org/10.1016/j.jafrearsci.2004.07.008
  • 17. Cheel, R.J., 1991. Grain fabric in hummocky cross-stratified storm beds: genetic implications. Journal of Sedimentary Research, 61: 102-110.
  • 18. Cheel, R.J., Leckie, D.A., 1993. Hummocky cross-stratification. Sedimentology Review, 1: 103-122. https://doi.org/10.1306/d426769a-2b26-11d7-8648000102c1865d
  • 19. Collins, E.S., Scott, D.B., Gayes, P.T., 1999. Hurricane records on the South Carolina coast: can they be detected in the sediment record? Quaternary International, 56: 15-26. https://doi.org/10.1016/S1040-6182(98)00013-5
  • 20. Demirkaya, D.F., Aksoy, N., Üner, S., 2017. Geological evolution of Eocene Agri Basin (Eastern Anatolia-Turkey): preliminary results. Research Abstract, European Geosciences Union, 19, EGU2017-292, 23-28 April 2017, Vienna, Austria.
  • 21. Dezileau, L., Sabatier, P., Blanchemanche, P., Joly, B., Swingedouw, D., Cassou, C., Castaings, J., Martinez, P., Von Grafenstein, U., 2011. Intense storm activity during the Little Ice Age on the French Mediterranean coast. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 289-297. https://doi.org/10.1016/j.palaeo.2010.11.009
  • 22. Donnelly, J.P., 2005. Evidence of past intense tropical cyclones from back barrier salt pond sediments: a case study from Isla de Culebrita, Puerto Rico, USA. Journal of Coastal Research, 42: 201-210.
  • 23. Dott, R.J., Bourgeois, J., 1982. Hummocky stratification: significance of its variable bedding sequences. GSA Bulletin, 93: 663-680. https://doi.org/10.1130/00167606(1982)93<663:hssoiv>2.0.co;2
  • 24. Duke, W.L., Arnott, R.W.C., Cheel, R.J., 1991. Shelf sandstones and hummocky cross stratification: new insights on a stormy debate. Geology, 19: 625-628. https://doi.org/10.1130/0091-7613(1991)019<0625:ssahcs>2.3.co;2
  • 25. Greenwood, B., 2006. Bimodal cross-lamination in wave-ripple form sets: a possible origin. Journal of Coastal Research, 22: 1220-1229. https://doi.org/10.2112/06A-0004.1
  • 26. Greenwood, B., Sherman, D.J., 1986. Hummocky cross-stratification in the surf zone: flow parameters and bedding genesis. Sedimentology, 33: 33-45. https://doi.org/10.1111/j.1365-3091.1986.tb00743.x
  • 27. Hamblin, A.P., 1992. Half-graben lacustrine sedimentary rocks of the Lower Carboniferous Strathlorne Formation, Horton Group, Cape Breton Island, Nova Scotia, Canada. Sedimentology, 39: 263-284. https://doi.org/10.1111/j.1365-3091.1992.tb01038.x
  • 28. Hamblin, A.P., Walker, R.G., 1979. Storm-dominated shallow marine deposits: the Fernie-Kootenany (Jurassic) transition, southern Rocky Mountains. Canadian Journal of Earth Sciences, 16: 1673-1690. https://doi.org/10.1139/E79-156
  • 29. Hamzeh, M.A., Gharaie, M.H.M., Lahijani, H.A.K., Djamali, M., Harami, R.M., Beni, A.N., 2016. Holocene hydrological changes in SE Iran, a key region between Indian summer monsoon and Mediterranean winter precipitation zones, as revealed from a lacustrine sequence from Lake Hamoun. Quaternary International, 408: 25-39. https://doi.org/10.1016/j.quaint.2015.11.011
  • 30. Harms, J.C., Southard, J.B., Spearing, D.R., Walker, R.G., 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Society for Sedimentary Geology (SEPM) Short Course, 2.
  • 31. Hays, M.O., 1967. Hurricanes as geological agents, South Texas Coast. AAPG Bulletin, 51: 937-942.
  • 32. Howard, J.D., 1971a. Comparison of the beach-to-offshore sequence in modern and ancient sediments. In: Recent Advances in Paleoecology and Ichnology (eds. J.D. Howard, J.W. Valentine and J.E. Warme): 148-183. Short Course Lecture Notes, American Geological Institute.
  • 33. Howard, J.D., 1971b. Trace fossils as paleoecological tool. In: Recent Advances in Paleoecology and Ichnology (eds. J.D. Howard, J.W. Valentine and J.E. Warme): 184-212. Short Course Lecture Notes, American Geological Institute.
  • 34. Howard, J.D., 1975. The sedimentological significance of trace fossils. In: The Study of Trace Fossils (ed. R.W. Frey): 131-146. New York, Springer Verlag. https://doi.org/10.1007/978-3-642-65923-2_8
  • 35. Ito, M., Asako, I., Toru, N., Saito, T., 2001. Temporal variation in the wavelength of hummocky cross-stratification: Implications for storm intensity through Mesozoic and Cenozoic. Geology, 29: 87-89. https://doi.org/10.1130/00917613(2001)029<0087:tvitwo>2.0.co;2
  • 36. Jeffery, D., Aigner, T., 1982. Storm sedimentation in the Carboniferous limestone near Weston-super-Mare (Dinantian, SW-Eng- land). In: Cyclic and Event Stratification (eds. G. Einsele, A. Seilacher): 240-247. Springer-Verlag Berlin Heidelberg, New York. https://doi.org/10.1 007/978-3-642-75829-4
  • 37. Johnson, M.E., 1989. Tempestite record as variable Pentamerus layers in the Lower Silurian of southern Norway. Journal of Paleontology, 63: 195-205. https://doi.org/10.1017/S0022336000019211
  • 38. Kahn, J.H., Roberts, H.H., 1982. Variations in storm response along a microtidal transgressive barrier-island arc. Sedimentary Geology, 33: 129-146. https://doi.org/10.1016/0037-0738(82)90046-X
  • 39. Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A.Ü., Karabiyikoğlu, M., Köse, O., Froger, J.F.,2005. Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Sciences, 14: 123-143.
  • 40. Kazanci, N., Gulbabazadeh, T., Leroy, S.A.G., Ileri, Ö., 2004. Sedimentary and environmental characteristics of the Gilan-Mazenderan plain, northern Iran: influence of long-andshort-term Caspian water level fluctuations on geomorphology. Journal of Marine Systems, 46: 145-168. https://doi.org/doi:10.1016/j.jmarsys.2003.12.002
  • 41. Kelling, G., Mullin, P.R., 1975. Graded limestones and limestone quartzite couplets: possible storm-sediments from the Pleistocene of Massachusetts. Petrology, 38: 971-984.
  • 42. Kempf, O., Blisniuk, P.M., Wang, S., Fang, X., Wrozyna, C., Schwalb, A., 2009. Sedimentology, sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin. SW-Tibet. Sedimentary Geology, 222: 27-41. https://doi.org/10.1016/j.sedgeo.2009.07.004
  • 43. Keskin, i., Dönmez, M., 2013. 1:100 000 Scale Turkey Geological Map Series, Agri-i49 Quadrangle, No: 176. General Directorate of Mineral Research and Exploration, Ankara-Turkey.
  • 44. Komatsubara, J., Fujiwara, O., Takada, K., Sawai, Y., Aung, T.T., Kamataki, T., 2008. Historical tsunamis and storms recorded in a coastal lowland, Shizuoka Prefecture, along the Pacific Coast of Japan. Sedimentology, 55: 1703-1716. https://doi.org/10.1111/j.13653091.2008.00964.x
  • 45. Li, Y., Sha, J.G., Wang, Q.F., Chen, S.W., 2007. Lacustrine tempestite litho- and biofacies in the lower Cretaceous Yixian Formation, Beipiao, western Liaoning, Northeast China. Cretaceous Research, 28: 194-198. https://doi.org/10.1016/j.cretres.2006.10.002
  • 46. Li, F., Yang, Y., Li, J., Yang, C., Dai, T., Zhao, J., Yi, H., 2014. Lacustrine tempestite and its geological significance in the Cenozoic study of the Qaidam Basin. Journal of Asian Earth Sciences, 92:157-167. https://doi.org/10.1016/j.jseaes.2014.06.020
  • 47. Li, F., Qu, X., Du, L., Dai, T., Yang, Y., Li, J., Yang, C., 2016. Genetic processes and environmental significance of lower Devonian brachiopod shell concentrations in Longmenshan area, Sichuan, China. Journal of Asian Earth Sciences, 115: 393-403. https://doi.org/10.1016/j.jseaes.2015.10.021
  • 48. Liu, K.B., Fearn, M.L., 1993. Lake-sediment record of Late Holocene hurricane activities from coastal Alabama. Geology, 21: 793-796. https://doi.org/10.1130/0091-7613(1993)021<0793:lsrolh>2.3.co;2
  • 49. Liu, X., Zhong, J.H., Grapes, R., Bian, S.H., Liang, C., 2012. Late Cretaceous tempestite in northern Songliao Basin, China. Journal of Asian Earth Sciences, 56: 33-41. https://doi.org/10.1016/j.jseaes.2012.02.007
  • 50. Magyar, I., Müller, P.M., Sztanó, O., Babinszki, E., Lantos, M., 2006. Oxygen related facies in Lake Pannon deposits (upper Miocene) at Budapest-Köbánya. Facies, 52: 209-220. https://doi.org/10.1007/s10347-005-0036-y
  • 51. Mángano, M.G., Buatois, L.A., Wu, X., Sun, J., Zhang, G., 1994. Sedimentary facies, depositional processes and climatic controls in a Triassic lake, Tanzhuang Formation, western Henan Province, China. Journal of Paleolimnology, 11: 41-65. https://doi.org/10.1007/BF00683270
  • 52. McCubbin, D.G., 1982. Barrier-island and strand-plain facies. AAPG Memoir, 31: 247-279.
  • 53. Melchor, R.N., Bellosi, E., Genise, J.F., 2003. Invertebrate and vertebrate trace fossils from a lacustrine delta: the Los Rastros Formation, Ischigualasto Provincial Park, San Juan, Argentina. Asociación Paleontológica Argentina, Publicación Especial, 9: 17-33.
  • 54. Meydan, A.F., Akkol, S., Dogan, O.H., 2022. Implications from the meteorological data effects on water level fluctuations of the Lake Van (Eastern Anatolia/Türkiye). Marine Science and Technology Bulletin, 11: 299-308. https://doi.org/10.33714/masteb.1125161
  • 55. Midtgaard, H.H., 1996. Inner-shelf to lower shoreface hummocky sandstone bodies with evidence for geostrophic influenced combined flow, Lower Cretaceous, West Greenland. Journal of Sedimentary Research, 66: 343-353. https://doi.org/10.1306/d4268342-2b26-11d7-8648000102c1865d
  • 56. Monaco, P., 1992. Hummocky cross-stratified deposits and turbidites in some sequences of the Umbria-Marche area (central Italy) during the Toarcian. Sedimentary Geology, 77: 123-142. https://doi.org/10.1016/0037-0738(92)90107-3
  • 57. Morsilli, M., Pomar, L., 2012. Internal waves vs. surface storm waves: a review on the origin of hummocky cross-stratification. Terra Nova, 24: 273-282. https://doi.org/10.1111/j.1365-3121.2012.01070.x
  • 58. Morton, R.A., 2002. Factors controlling storm impacts on coastal barriers and beaches: a preliminary basis for near real-time forecasting. Journal of Coastal Research, 18: 486-501.
  • 59. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200: 184-207. https://doi.org/10.1016/j.sedgeo.2007.01.003
  • 60. Myrow, P.M., 2005. Storms and storm deposits. In: Encyclopedia of Geology (eds. R.C. Selley, R. Cocks and I. Pilmer): 580-587. Elsevier Limited, Oxford.
  • 61. Myrow, P.M., Southard, J.B., 1991. Combined-flow model for vertical stratification sequences in shallow marine storm-deposited beds. Journal of Sedimentary Research, 61: 202-210. https://doi.org/10.1306/D42676D1-2B26-11D7-8648000102C1 865D
  • 62. Myrow, P.M., Southard, J.B., 1996. Tempestite deposition. Journal of Sedimentary Research, 66: 875-887. https://doi.org/10.1306/D426842D-2B26-11D7-8648000102C1 865D
  • 63. Myrow, P.M., Lukens, C., Lamb, M.P., Houck, K., Strauss, J., 2008. Dynamics of a transgressive prodeltaic system: implications for geography and climate within a Pennsylvanian intracratonic basin, Colorado, USA. Journal of Sedimentary Research, 78: 512-528. https://doi.org/10.2110/jsr.2008.061
  • 64. Nehyba, S., Roetzel, R., 2022. High-energy, microtidal nearshore deposits and their provenance (Lower Miocene, Burdigalian/Eggenburgian, Alpine-Carpathian Foredeep, Lower Austria). Geological Quarterly, 66 (1): 1-29. https://doi.org/10.7306/gq.1665
  • 65. Obi, G.C., 1998. Upper Cretaceous Gongila formation in the Hawal Basin, Northeast Benue Trough: a storm and wave dominated regressive shoreline complex. Journal of African Earth Sciences,26: 619-632. https://doi.org/10.1016/S0899-5362(98)00036-0
  • 66. Okay, A.I., Zattin, M., Cavazza, W., 2010. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology, 38: 35-38. https://doi.org/10.1130/G30234.1
  • 67. Orpin, A.R., Carter, L., Page, M.J., Cochran, U.A., Trustrum, N.A., Gomez, B., Palmer, A.S., Mildenhall, D.C., Rogers, K.M., Brackley, H.L., Northcote, L., 2010.Holocene sedimentary record from Lake Tutira: a template for upland watershed erosion proximal to the Waipaoa sedimentary system, northeastern New Zealand. Marine Geology, 270: 11-29. https://doi.org/10.1016/j.margeo.2009.10.022
  • 68. Özdemir, Y., Blundy, J.D., Güleç, N., 2011. The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan Stratovolcano, eastern Anatolia, Turkey. Contributions to Mineralogy and Petrology, 162: 573-597. https://doi.org/10.1007/s00410-011-0613-8
  • 69. Page, M.J., Trustrum, N.A., Orpin, A.R., Carter, L., Gomez, B., Cochran, U.A., Mildenhall, D.C., Rogers, K.M., Brackley, H.L., Palmer, A.S., Northcote, L., 2010. Storm frequency and magnitude in response to Holocene climate variability, Lake Tutira, North-Eastern New Zealand. Marine Geology, 270: 30-44. https://doi.org/10.1016/j.margeo.2009.10.019
  • 70. Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., Mac Eachern, J.A., Robbins, D., Sinclair, I.K., 2001. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne D'Arc Basin. Geological Association of Canada, Short Course Notes, 15: 343.
  • 71. Perillo, M.M., Best, J.L., Yokokawa, M., Sekiguchi, T., Takagawa, T., Garcia, M.H., 2014. A unified model for bed form development and equilibrium under unidirectional, oscillatory and combined-flows. Sedimentology, 61: 2063-2085. https://doi.org/10.1111/sed.12129
  • 72. Phantuwongraj, S., Choowong, M., Nanayama, F., Hisada, K.I., Charusiri, P., Chutakositkanon, V., Pailoplee, S., Chabang- bon, A., 2013. Coastal geomorphic conditions and styles of storm surge washover deposits from southern Thailand. Geomorphology, 192: 43-58. https://doi.org/10.1016/j.geomorph.2013.03.016
  • 73. Puga-Bernabéu, Á., Aguirre, J., 2017. Contrasting stormversus tsunami-related shell beds in shallow-water ramps. Palaeogeography, Palaeoclimatology, Palaeoecology, 471: 1-14. https://doi.org/10.1016/j.palaeo.2017.01.033
  • 74. Roman, C.T., Peck, J.A., Allen, J.R., King, J.W., Appleby, P.G., 1997. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise, Estuarine, Coastal Shelf Sciences, 45: 717-728. https://doi.org/10.1006/ecss.1997.0236
  • 75. Sabatier, P., Dezileau, L., Condomines, M., Briqueu, L., Colin, C., Bouchette, F., Le Duff, M., Blanchemanche, P., 2008. Reconstruction of paleostorm events in a coastal lagoon (Herault, south of France). Marine Geology, 251: 224-232. https://doi.org/10.1016/j.margeo.2008.03.001
  • 76. Sabatier, P., Dezileau, L., Briqueu, L., Colin, C., Siani, G., 2010. Clay minerals and geochemistry record from northwest Mediterranean coastal lagoon sequence: implications for paleostorm reconstruction. Sedimentary Geology, 228: 205-217. https://doi.org/10.1016/j.sedgeo.2010.04.012
  • 77. Sabatier, P., Dezileau, L., Colin, C., Briqueu, L., Bouchette, F., Martinez, P., Siani, G., Raynal, O., Von Grafenstein, U., 2012. 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. Quaternary Research, 77: 1-11. https://doi.org/10.1016/j.yqres.2011.09.002
  • 78. Savrda, C.E., Nanson, L.L., 2003. Ichnology of fair-weather and storm deposits in an Upper Cretaceous estuary (Eutaw Formation, western Georgia, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 202: 67-83. https://doi.org/10.1016/S0031-0182(03)00628-X
  • 79. Schwarz, E., Poyatos-Moré, M., Boya, S., Gomis-Cartesio, L., Midtkandal, I., 2021. Architecture and controls of thick, intensely bioturbated, storm-influenced shallow-marine successions: An example from the Jurassic Neuquén Basin (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110109, 1-18. https://doi.org/10.1016/j.palaeo.2020.110109
  • 80. Schwartz, R.K., 1975. Nature and Genesis of Some Storm Washover Deposits. Technical Memo, 61. U.S. Army, Corps of Engineers, Coastal Engineering Research Center.
  • 81. Scott, J.J., Buatois, L.A., Mángano, M.G., 2012.Lacustrine environments. Developments in Sedimentology, 64: 379-417. https://doi.org/10.1016/B978-0-444-53813-0.00013-7
  • 82. Southard, J.B., Lambie, J.M., Federico, D.C., Pile, H.T., Weidman, C.R., 1990. Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow, and the origin of hummocky cross-stratification. Journal of Sedimentary Research, 60: 1-17. https://doi.org/10.1306/212F90F7-2B24-11D7-8648000102C1865D
  • 83. Stockhecke, M., Anselmetti, F.S., Meydan, A.F., Odermatt, D., Sturm, M., 2012. The annual particle cycle in Lake Van (Turkey). Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334: 148-159. https://doi.org/10.1016/j.palaeo.2012.03.022
  • 84. Șaroğlu, F., Güner, Y., 1981. Elements affecting the geomorphological development of Eastern Anatolia: geomorphology, tectonic, volcanism relations (Turkish with English summary). Türkiye Jeoloji Bülteni, 24: 39-50.
  • 85. Șengör, A.M.C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75: 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  • 86. Șengör, A.M.C., Özeren, M.S., Keskin, M., Sakinç, M., Özbakir, A.D., Kayan, I., 2008. Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 90: 1-48. https://doi.org/10.1016/j.earscirev.2008.05.002
  • 87. Tuttle, M.P., Ruffman, A., Anderson, T., Jeter, H., 2004. Distinguishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismological Research Letters, 75: 117-131. https://doi.org/10.1785/gssrl.75.1.117
  • 88. Üner, S., 2018. Late Quaternary lacustrine storm deposits: sedimentological properties and regional significance (Lake Van Basin-Eastern Turkey). Arabian Journal of Geosciences, 11: 582, 1-12. https://doi.org/10.1007/s12517-018-3946-z
  • 89. Üner, S., Sağlam Selçuk, A., Özsayin, E., 2019. Non-seismic soft-sediment deformation structures from Late Pleistocene lacustrine deposits of Lake Van (Eastern Turkey): storm and overloading effect. Journal of Great Lakes Research, 45: 664-671. https://doi.org/10.1016/j.jglr.2019.03.007
  • 90. Van Djik, D.E., Hobbday, D.K., Tankard, A.J., 1978. Permo-Triassic lacustrine deposits in the eastern Karoo Basin, Natal, South Africa. IAS Special Publication, 2: 225-239.
  • 91. Walker, R.G., Duke, W.L., Leckie, D.A., 1983. Hummocky stratification: significance of its variable bedding sequences: discussion and reply. GSA Bulletin, 94: 1245-1251. https://doi.org/10.1130/0016-7606(1983)94<1245:hssoiv>2.0.co;2
  • 92. Wang, P., Kirby, J.H., Haber, J.D., Horwitz, M.H., Knorr, P.O., Krock, J.R., 2006. Morphological and sedimentological impacts of Hurricane Ivan and immediate poststorm beach recovery along the northwestern Florida barrier-island coasts. Journal of Coastal Research, 22: 1382-1402. https://doi.org/10.2112/05-0440.1
  • 93. Wang, J.H., Jiang, Z.X., Zhang, Y.F., 2015. Subsurface lacustrine storm-seiche depositional model in the Eocene Lijin Sag of the Bohai Bay Basin, East China. Sedimentary Geology, 328: 55-72. https://doi.org/10.1016/j.sedgeo.2015.07.014
  • 94. Weidong, D., Baoguo, Y., Xiaogen, W., 1997.Studies of storm deposits in China: a review. Continental Shelf Research, 17: 1645-1658. https://doi.org/10.1016/S0278-4343(97)00029-0
  • 95. Woodruff, J.D., Donnelly, J.P., Okusu, A., 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Review, 28: 1774-1785. https://doi.org/10.1016/j.quascirev.2009.02.005
  • 96. Yamaguchi, N., Sekiguchi, H., 2010. Effects of settling and preferential deposition of sediment on ripple roundness under shoaling waves. Journal of Sed imentary Research, 80: 781-790. https://doi.org/10.2110/jsr.2010.072
  • 97. Yokokawa, M., Masuda, F., Endo, N., 1995. Sand particle movement on migrating combined flow ripples. Journal of Sedimentary Research, 65A: 40-44. https://doi.org/10.1306/D4268018-2B26-11D7-8648000102C1865D
  • 98. Zhang, C., Wanga, H., Liao, J., Liao, Y., Wei, J., Lu, Z., 2018. Oligocene storm-induced lacustrine deposits in the Yaxi Area of the Jiuxi Basin, northeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 161: 122-138. https://doi.org/10.1016/j.jseaes.2018.05.003
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38d8ac59-0020-4926-8b9a-506d5e07402c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.