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INTRODUCTION

Animals live and move in heterogeneous en-
vironments [Johnson et al., 1992]. This hetero-
geneity affects not only resources such as food, 
shelter, breeding sites and partners, but also the 
impact of climate change [Rai et al., 2012]. Given 
this heterogeneity, the distribution of organisms 
is often non-random, resulting from the habitat 
selection processes that are almost universal in 
the animal kingdom. Understanding the habitat 
selection process and its structuring (spatial and 

temporal) is therefore essential, reflecting the 
structuring of potential population-limiting fac-
tors [Northrup et al., 2022]. The partridge is an 
emblematic bird species of agricultural heritage. 
It is one of the most common bird species found 
in agricultural environments [Emmerson et al., 
2016]. Its importance is both cultural and socio-
economic [Chattopadhyay et al., 2021]. Today, 
it enjoys an unfavorable conservation status due 
to a marked decline in abundance throughout the 
area in which it is native, and the origins of this 
decline in the partridge have been extensively 
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studied [Raherilalao 2001]. Most of the causes 
identified are linked directly or indirectly to the 
intensification of agriculture, but these causes 
have varied over time. Studies on the decline 
of the partridge identify major causes linked to 
the intensification of agriculture, the destruction 
of nesting habitat, the fall in the availability of 
insects needed to feed juveniles, and changes in 
bioclimatic variables, specifically temperature 
[Emmerson et al., 2016; Préau et al., 2018].

The temperature is a crucial geophysical 
parameter that has a significant impact on eco-
logical processes such as photosynthesis, plant 
growth, the distribution and frequency of animal 
as well as plant species, the regulation of water 
cycles and the presence of nutrients [Rongali et 
al., 2018; Gavrilović et al., 2019; Zhang et al., 
2022]. The use of remote sensing techniques plays 
a pivotal role in acquiring data and gathering the 
information about land surface temperature over 
large geographical areas at regular intervals with-
out the need for direct contact with the objects or 
phenomena being studied [Barbieri 2018; Tariq 
et al., 2020; Al-Taisan 2022; Li et al., 2023]. Re-
mote sensing is a fascinating tool for examining 
the relationship between surface temperature, land 
cover and normalized difference vegetation index 
(NDVI) [Deng et al., 2018; Liu et al., 2021; Alade-
momi et al., 2022]. Several studies have shown 
that land use and land cover can have a significant 
impact on land surface temperature, in fact, dif-
ferent forms of land cover can behave differently 
in terms of absorbing, reflecting or emitting heat, 
resulting in disparities in surface temperature [Bai 
et al., 2019; Yibo et al., 2021]. For remote sensing 
researchers, exploring the relationship between 
land surface temperature (LST) and NDVI is a 
highly interesting research question [Chen et al., 
2013; Hu et al., 2019; Malik et al., 2019].

Several studies have shown that the rela-
tionship between NDVI and LST can be used to 
detect signs of climate change, environmental 
degradation, exaggerated weather events, anthro-
pogenic activities such as agricultural practices, 
and changes in terrestrial ecosystems [Sandholt 
et al., 2002; Fontanelli et al., 2012; Tariq et al., 
2020; Allam et al., 2021; Ullah et al., 2023]. On 
the other hand, the images obtained from satel-
lites can be used to map LST and NDVI on a 
large scale, allowing analysis of long-term trends 
and changes in the land cover and land surface 
temperature [Li et al., 2019; Parmar et al., 2022]. 
Several techniques can be used to estimate land 

surface temperature from remote sensing data. 
One of these is the brightness temperature (BT) 
method, which represents the temperature at 
which a surface would emit thermal energy if it 
behaved like a perfect black body. To apply this 
method [Nguyen et al., 2019; Xing et al., 2021; 
Nasiri et al., 2022], the data from the thermal in-
frared bands of satellite images is required [Sajib 
and Wang, 2020].

The conceptualization of the ecological niche 
and its subsequent modeling constitute the foun-
dational underpinning for the majority of meth-
odologies crafted to prognosticate the spatial 
distribution of species [Fabri-ruiz 2019; Brier 
and lia-dwi, 2020]. The species niche modeling 
is essential for biodiversity conservation, particu-
larly for endemic and rare species. It is particu-
larly important in the context of environmental 
change [Toffa et al., 2022]. Maxent (maximum 
entropy) is an ecological niche modeling model 
widely used to predict the geographic distribution 
of species as a function of presence data and en-
vironmental variables [Urbani et al., 2017]. It has 
gained popularity in recent years due to its power 
and ease of use. One of Maxent’s key features is 
its ability to project and generate the probability 
maps showing how the potential distribution of 
a species would change under different scenarios 
of climate change or changes in environmental 
variables [Chikerema et al., 2013]. This capa-
bility makes it a valuable tool for assessing how 
species’ habitats might evolve in the present and 
future [Tang et al., 2021].

This research focused on the multi-temporal 
relationship LULC, NDVI and LST in the ar-
eas influenced by climate change with so many 
droughts on the one hand and anthropogenic ef-
fects on the other, knowing that this region is 
characterized by a specific geographical space 
and a very fragile natural environment [Karnieli 
et al., 2010; Ogunjobi et al., 2018; Gogoi et al., 
2019]. During the study period, the land cover 
map of study area was obtained by the supervised 
likelihood classification method, while the LST 
and NDVI calculations are based on the data col-
lected by the Landsat sensors in addition; this 
manuscript has a triple objective. Firstly, the aim 
of the project was to analyze the spatial and tem-
poral distribution patterns of surface temperature 
in the study area. Secondly, it sought to exam-
ine the correlation between surface temperature 
and its determinants in various land use catego-
ries. Thirdly, it aimed to establish a correlation 



262

Ecological Engineering & Environmental Technology 2024, 25(1), 260–275

between ground surface temperature and the nor-
malized difference vegetation index, with a view 
to predicting the impact of this temperature on 
the current and future geographical distribution 
of partridge ecological niches. This study repre-
sents the first initiative to assess the consistency 
of the relationship between LST and NDVI on 
the one hand and to collect the data on the spatio-
temporal evolution of these variables in the city 
of Meknes (Morocco) on the other hand, with the 
aim of building a database that can be used in cur-
rent and future modeling of the ecological niches 
of different species.

MATERIALS AND METHODS 

Description of the study area

According to the latest administrative divi-
sion of 2015, the prefecture of Meknes is part of 
the Fez-Meknes region; it covers an area of 1786 
km2, occupies a strategic geographical position, 
is located on the Saïs plateau between two sets of 
mountains of the Pre Rif and the Western Middle 
Atlas, and its territory is crossed by the valley of 
the Oued Boufakrane (Figure 1). According to the 
most recent data from the 2014 general popula-
tion and housing census, the legal population of 
the prefecture in the majority urban area reached 
835,695 inhabitants in 2014 with a density of 468 
inhabitants per km2, among whom 82.3% live in 
urban areas [Ayanlade et al., 2021]. The region 
is the second-largest regional metropolis and oc-
cupies a very strategic position. In addition to this 
geographical location, the region offers impor-
tant economic potential; the fertile plains of Saïs, 

coupled with abundant water resources, promote 
human habitation and the establishment of exten-
sive communication networks [Mohajane et al., 
2018; Ayanlade et al., 2021].

Data 

The USGS Earth Explorer website is a plat-
form used to access a variety of geospatial data; 
it comprises satellite imagery from a variety of 
sensors, including Landsat 7 (ETM+) and Land-
sat 8 (OLI/TIRS). For the research area, this was 
taken between May 2000 and 2021. Each dataset 
was pre-processed and projected using the univer-
sal projection technique (UTM). The characteris-
tics of the satellite data are presented in Table 1 
[USGS 2022]. For this study, all bioclimatic and 
elevation variable layers were obtained from the 
WorldClim database at the highest spatial reso-
lution (30 arc seconds (~1 km)). All these lay-
ers were processed using QGIS 3.26.3. Partridge 
distribution data for the study area was gathered 
through a combination of information sourced 
from the Global biodiversity information facility 
(GBIF) at https://www.gbif.org and in situ data 
in the study area. The application of the Maxent 
model was employed to ascertain the environ-
mental factors shaping the distribution of par-
tridge and to model the current geographic distri-
bution zones of the species.

Methods

To achieve the study objectives, three funda-
mental measures were implemented. The initial 
step involved the identification of LULC types 
within the research area. The second step was to 

Figure 1. Location of the study area
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extract the NDVI for analysis. The third step en-
tailed the extraction of LST from thermal band 
images of Landsat 7 ETM+ and Landsat 8 OLI/
TIRS [Chen et al., 2013]. A statistical analysis of 
NDVI in conjunction with LST was subsequently 
employed to assess the changes in LST in cor-
relation with NDVI and, ultimately, to examine 
its relationship with the different LULC classes 
[Alademomi et al., 2022]. Figure 2 displays all of 
the specific methodologies employed in the study.

All acquired images were selected for pro-
cessing using QGIS 3.26 software. These images 
were subjected to a supervised classification pro-
cess by means of the maximum likelihood clas-
sification (MLC) method. This process was used 
for the classification and identification of differ-
ent types of land use and land cover (LULC) in 
the study area during the specified period [Viana 
et al., 2019].

The Landsat 7 ETM+ thermal band 6 and 
Landsat 8 TIRS bands 10 and 11 were used to 
determine LST. The four processes listed above 

must be followed in order to determine the LST 
using these bands (Table 2) [USGS 2022].

Transforming DN into Spectral Radiance in-
volves applying specific equations provided by the 
satellite sensor’s calibration coefficients. These co-
efficients vary depending on the sensor and band 
being used. The equations typically include such 
factors as gain, offset, and radiometric rescaling 
parameters [Mujabar 2019]. The pixels of the im-
ages are transformed into absolute radiance units 
according to equation 1 [Ogunjobi et al., 2018].
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The equivalent equation was used for the cal-
culation according to the following formula:
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where: Lλ – spectral radiance at the sensor aper-

ture (W/(m²·sr·μm)); QCAL – quantized 
calibrated pixel value (DN); LMINλ – 
Spectral radiance scaled to QCALMIN 
(W/(m²·sr·μm)), and represented the 

Table 1. Characteristics of the primary /satellite data used in the present study
Sensor Date Resolution Source

Landsat- 7 ETM+ May 2000 30 m USGS Earth Explorer

Landsat- 7 ETM+ May 2010 30 m USGS Earth Explorer

Landsat- 8 OLI/TIRS May 2021 30 m USGS Earth Explorer

Figure 2. The specific methodologies of the study
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radiance corresponding to the minimum 
QCAL value used as a reference for 
calibration; LMAXλ – spectral radiance 
scaled to QCALMAX (W/(m²·sr·μm));  
QCALMIN – minimum quantized and 
calibrated pixel value (DN); QCALMAX 
– maximum quantized calibrated pixel 
value (DN).

The picture pixels are transformed into abso-
lute radiance units [Bodart et al., 2011]. Formula 
3 can be expressed as follows:
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where: Lλ – represents the spectral radiance at a 
given wavelength (λ), expressed in W/
(m²·sr·μm); ML – the slope coefficient, 
also known as the radiometric calibra-
tion slope. It represents the linear re-
lationship between the quantized pixel 
values (QCAL) and the spectral radi-
ance. The slope coefficient is expressed 
in W/(m²·sr·μm)/DN; QCAL – this is the 
quantized pixel value, expressed in digi-
tal numbers (DN). It is a discrete mea-
surement that represents the intensity of 
light captured by the sensor for a specific 
pixel. AL – this is the offset or intercept 
of the radiometric calibration. It repre-
sents a constant shift that is added to the 
QCAL value to obtain the corresponding 
spectral radiance. This is expressed in W/
(m²·sr·μm).

To calculate the absolute radiance of a specific 
pixel, the calibrated pixel value (QCAL) is multi-
plied by the multiplicative gain factor (ML) and 
then the additive offset (AL) is added. These spe-
cific values (ML and AL) depend on the calibration 
process and the imaging system used. Absolute 
radiance calculation allows quantitative analysis 
and interpretation of the image data in terms of ra-
diometric measurements [Mohajane et al., 2018].

Estimation of land surface emissivity

Land surface pixels in satellite pictures are 
frequently mixed pixels, which means they con-
tain elements of several surface types, including 
water, plants, and soil. The NDVI threshold ap-
proach was used to determine the emissivity of 
the land surface. This was done using satellite 
thermal band data. NDVI is used to assess the 
degree of vegetation cover by analyzing red and 
near-infrared (NIR) reflectance values to distin-
guish between the vegetated and non-vegetated 
areas. The NDVI can be calculated according to 
equation 4, with the utilization of bands 3 and 4 
for the Landsat 7 imagery and bands 4 and 5 for 
the Landsat 8 imagery [Ayanlade et al., 2021].
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λNIR and λRED represent the reflectance 
values in the near-infrared (NIR) and red bands, 
respectively. The NDVI measurements were used 
to calculate the proportion of vegetation (PV) in 
accordance with equation 5 [Yue et al., 2007]:
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Table 2. Description of Landsat7 (ETM+) and Landsat 8 (OLI & TIRS)

No
Landsat 7 (ETM+) Landsat 8 (OLI & TIRS)

Band Name Resolution 
(m)

Wavelength 
(Micrometers) Band Name Resolution 

(m)
Wavelengt 

(Micromete)

1 Blue 30 0.435–0.451 Ultra-Blue (coastal/
aerosol) 30 0.435–0.451

2 Green 30 0.52–0.60 Blue 30 0.452–0.512

3 Red 30 0.63–0.69 Green 30 0.533–0.590

4 NIR 30 0.77–0.90 Red 30 0.636–0.673

5 SWIR1 30 1.55–1.75 NIR 30 0.851–0.879

6 Thermal 60*(30) 10.40–12.50 SWIR1 30 1.566–1.651

7 SWIR2 30 2.09–2.35 SWIR2 30 2.107–2.294

8 Panchromatic 15 0.52–0.90 Panchromatic 15 0.503–0.676

9 Cirrus 30 1.363–1.384

10 TIRS1 100*(30) 10.60–11.19

11 TIRS2 100*(30) 11.50–12.51
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NDVImax represents the NDVI value for 
densely vegetated land cover, whereas NDVImin 
corresponds to the NDVI value for non-vegetated 
land cover. The resulting PV values range from 0 
to 1, with 0 corresponding to no vegetation and 
1 to complete vegetation cover (Table 3). These 
values can be used to estimate the emissivity val-
ue of the land surface under the following condi-
tions (Eq. (6)).
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where: εv – the emissivity of the vegetation com-
ponent. It represents the emissivity of the 
vegetation cover; εs – the emissivity of the 
non-vegetated (soil) component. It repre-
sents the emissivity of the bare ground or 
non-vegetated surface; Pv – the vegetation 
cover fraction or vegetation proportion. It 
represents the proportion of an area that is 
covered by vegetation. It ranges from 0 to 1, 
where 0 indicates no vegetation and 1 indi-
cates full vegetation cover; Ce – the emissiv-
ity constant or offset, Cε = (1- εs) (1- εv). 

Emissivity values can vary depending on 
many factors, such as vegetation type, soil com-
position, wavelength, temperature, and environ-
mental conditions. Table 3 shows some typical 
emissivity values for vegetation and bare soil.

Brightness temperature calculation

The brightness temperature (BT) is an ap-
proximation of the actual temperature that is 
measured by a satellite sensor. The Planck 
equation is commonly used, which relates the 
spectral radiance (Lλ) of a surface at a given 

wavelength to the brightness temperature [BT; 
Qin and Karnieli, 1999]. It is expressed as fol-
lows (Eq. (7)).
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where: BT – is the actual sensor brightness tem-
perature; K1 – calibrating constant 1; K2 
– calibrating constant 2; Lλ – the spectral 
radiance.

To obtain results in Celsius, the radiation 
temperature is corrected by adding absolute zero 
(-273.15°C) (Table 4) [Qin and Karnieli, 1999].

Estimation of LST

Equation 8 is one of the common methods for 
estimating land surface temperature from brightness 
temperature (BT) [Sajib and Wang, 2020].
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where: LST – represents the land surface tem-
perature; BT – represents the brightness 
temperature in Celsius (°C); λ – the wave-
length at which the measurement is made, 
usually expressed in (μm); ρ – the spec-
tral density of the radiation emitted by the 
blackbody at temperature BT, expressed 
in (W/(m²-sr-μm)); ln – the neperian loga-
rithm function; ελ – the spectral emissiv-
ity, which represents the ability of an ob-
ject or surface to emit thermal radiation at 
a given wavelength.

This equation takes into account the influence 
of surface emissivity and atmospheric effects 
on the brightness temperature-land temperature 
relationship.

Table 3. Land surface emissivity of Landsat 7 and 8 thermal bands
Sensor Bands Vegetation Soil

Landsat 7 ETM + Band 6 0.99 0.973

Landsat 8 Oli/TIRS Band 10 0.984 0.97

Table 4. K1 and K2 value for Landsat 7 ETM+ and Landsat 8 TIRS bands
Sensor Landsat 7 ETM + Landsat 8 TIRS bands

Band Band 6 Band 10 Band 11

K1 666.09 1321.08 1201.14

K2 1282.71 777.89 480.89
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Statistical analysis

To assess the most significant variables, 
statistical analysis is crucial. The NDVI and 
LST were subjected to statistical methods for 
evaluation by extracting data points from the 
pixel values of the LST and NDVI images in 
this study. In total, 1200 sample points were 
chosen for each study period. The outcomes of 
the linear regression analysis were then used to 
create the scatterplots.

RESULTS AND DISCUSSION

LULC mapping

Using the Landsat images from the USGS ar-
chive, variation in the different land use and land 
cover classes was detected throughout the study 
period (2000, 2010 and 2021). The application 
of the maximum likelihood supervised classifi-
cation algorithm on Landsat imagery facilitated 
the identification and mapping of distinct LULC 
classes and detection of the changes that have 

Figure 3. Land use land cover classification map for the year 2000, 
2010 and 2021 and percentage of change statistics
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occurred in space and time. The results obtained 
are shown in Figure 3.

According to the statistical analysis carried 
out, the LULC classes that showed the major-
ity of changes are as follows: there was a reduc-
tion in the areas covered by the dense vegetation 
(-0.46%), sparse/shrubby vegetation (-1.48%), 
plantations (-1.05%), barren/rocky land (-3.12%), 
and barren land (-3.15%) classes. In contrast, there 
was an increase in the areas devoted to agriculture 
(0.71%), moderately dense forest (0.78%), and 
built-up areas (7.67%) (Table 5).

The results obtained indicate significant 
changes in LULC classes over the study period. 
These changes can be explained by various en-
vironmental, socio-economic, and anthropogenic 
factors, further studies, such as field surveys and 
socio-economic analyses, were carried out for a 
more in-depth understanding of the factors re-
sponsible for the observed variations.

The decline observed in the Dense Forest, 
Sparse/scrub, Plantation, Barren/Rocky and Bar-
ren classes can be attributed to such processes as 
climate change, deforestation, urbanization, and 
the conversion of natural land into barren or ar-
tificial areas.

The increase in agricultural, medium-density 
forest and built-up classes can be explained by 
such factors as agricultural expansion, popula-
tion growth and urbanization, while the increase 
in agricultural land can be due to the conversion 
of forest land, the introduction of new agricultural 
practices or the expansion of cash crops. The in-
crease in built-up and urban areas can be due to 
rapid urbanization, industrial and residential de-
velopment as well as infrastructure expansion. 

Effects of LULC change on NDVI

Figure 4 presents the NDVI images of the 
Meknes watershed for the years 2001, 2010 and 
2021. The obtained NDVI values vary from -0.5 
to 0.48 in 2001, -0.65 to 0.55 in 2010 and -0.20 
to 0.65 in 2021 (Table 6). Negative to near-zero 
values generally indicate low vegetation density, 
while values near 1 indicate high vegetation den-
sity and healthier vegetation. These NDVI read-
ings make it possible to compare the vegetation 
cover in the Meknes catchment over time and to 
detect possible changes or variations in vegeta-
tion density between the different years studied.

Spatio-temporal patterns in LST dynamics

Land surface temperature derivation from 
the studied region showed substantial spatial and 
temporal variation. The maps in Figure 5 show 
that the temperature range from 15.85 to 36.20°C 
in 2000, 12.76 to 38.24°C in 2010 and 25.73 to 
47.79°C in 2021 (Table 7). In turn, the areas with 
increasing temperatures were indicated in red, the 
regions with dense plant cover were highlighted 
in blue as having lower temperatures. The results 
were in line with the regression analysis, which 
showed that the surface temperatures of populated 
areas and arid terrain were higher than those of 
regions with bodies of water and vegetation.

Exploring the correlation between 
NDVI dynamics and LST

Scatterplots show an inverse correlation (R2) 
between LST and NDVI (Figure 6), which was 
0.3682 in 2000, 0.2812 in 2010 and 0.2133 in 

Table 5. Land uses Land cover area and change statistics

Land use class 2000 (%) 2010 (%) 2021 (%) Change in area 
(%) 2000-2010

Change in area 
(%) 2010-2021

Change in area 
(%) 2000-2021

Water bodies 0.11 0.22 0.11 0.11 -0.11 0

Dense Forest 0.79 0.35 0.33 -0.44 -0.02 -0.46
Moderately dense 
Forest 1.75 1.57 2.53 -0.18 0.96 0.78

Sparse/Scrub 27.41 21.49 25.93 -5.92 4.44 -1.48

Agriculture 7.41 3.92 8.12 -3.49 4.2 0.71

Plantation 8.84 9.17 7.79 0.33 -1.38 -1.05
Barren/Rocky 40.43 46.59 37.31 6.16 -9.28 -3.12

Barren 9.66 12.31 6.51 2.65 -5.8 -3.15

Built-up 3.60 4.38 11.27 0.78 6.89 7.67

Total 100 100 100 0 0 0
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Figure 4. Normalized differential vegetation index maps for the years 2000, 2010 and 2021

Table 6. Statistical summary of NDVI values in Meknes City and its surroundings (2000–2021)

Year Minimum Maximum Mean
Mean NDVI difference

2000-2010 2010-2021 2000-2021

May 2000 -0.5 0.48 -0.10

May 2010 -0.65 0.55 -0.13 -0.03 -0.13

May 2021 -0.20 0.65 -0.26
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Table 7. Statistical summary of LST (℃) values in Meknes City and its surroundings (2000–2021)

Year Minimum Maximum Mean
Mean LST difference

2000-2010   2010-2021   2000-2021

May 2000 15.85 36.20 27.28

May 2010 12.76 38.24 29.83 2.55 10.10           12.28

May 2021 25.73 47.79 39.93

Figure 5. Land surface temperature maps for 2000, 2010 and 2021
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Table 8. Linear regression data between NDVI and LTS for the years 2000, 2010 and 2021
Year Parameter Value Error R SD N P

2000
A 24.59841 0.12547

0.60679 2.5387 1200 <0.001
B -16.96928 0.64223

2010
A 25.57767 0.10829

-0.53027 2.5683 1200 <0.001
B -15.3013 0.70682

2021
A 40.58647 0.19802

-0.4618 2.3409 1200 <0.001
B -14.66313 0.81369

Figure 6. Spatially scattered plots of LST and NDVI of Meknes city 
and it’s surrounding for the years 2000, 2010 and 2021
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Figure 7. Reliability test of the distribution model created by the MaxEnt t model for Alectoris Barbara

2021 (Table 8). Similar results have been reported 
by Naikoo et al. (2020), who revealed that there 
is an inverse trend between these two variables, 
where an increase in surface temperature is as-
sociated with a decline in NDVI and vice versa. 
This relationship can be explained by several 
factors. When the surface temperature increases, 
it can lead to unfavorable environmental condi-
tions for vegetation. Periods of intense heat can 
induce heat stress on plants, which can affect their 
growth and health. As a result, plant density may 
decrease, reflected in a decrease in NDVI [Allam 
et al., 2021]. In addition, an increase in surface 
temperature can lead to an increase in evapotrans-
piration, the loss of water through evaporation 
from the soil and plant transpiration. Increased 
evapotranspiration can reduce water availability 
for plants, which can also contribute to a decrease 
in NDVI [Li et al., 2021].

Model evaluations and critical 
environmental variables

The results obtained by the maximum entropy 
model for predicting potential habitats for par-
tridges were excellent. The mean AUC value of 
0.959 was significantly higher compared to ran-
dom prediction value (0.5) (Figure 7); this con-
firms that the predictions were very accurate, sug-
gesting that the potential distribution area results 
obtained from MaxEnt were reliable and robust 
[Qin et al., 2017; Jain et al., 2021].

Potential distribution of partridges 
in the study area

The results obtained are promising for pre-
dicting the distribution of partridges in the study 
area. On the basis of this data, it can be anticipated 
where these birds are most likely to be found. The 
geographical distribution map, shown in Figure 8, 
clearly visualizes these predictions. It should pro-
vide a visual overview of the likely distribution of 
partridges throughout the region.

The escalation in surface temperature has 
emerged as a pivotal factor exerting discernible im-
pacts on ecological dynamics, particularly manifest 
in the alteration of normalized difference vegeta-
tion indices and subsequent ramifications for the 
distribution patterns of avian species, exemplified 
by the partridge in the Moroccan context. In rela-
tion to these results, Stralberg et al. (2020) report-
ed that that elevated temperatures induce shifts in 
vegetation characteristics, thereby influencing the 
availability of suitable habitats for various species. 
Similar results were revealed by Kaluskar et al. 
(2020) who showed the intricate interplay between 
temperature fluctuations and vegetation dynam-
ics as well as underscored the indispensability of 
a comprehensive understanding of these ecological 
relationships between the environmental conditions 
and the potential distribution of some species un-
der the African climatic conditions. The decline in 
NDVI, as a proxy for vegetation health and vigor, 
emerges as a crucial link in this causal chain, delin-
eating a trajectory wherein the temperature-induced 
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Figure 8. Current distribution model predicted by Maxent in fes-meknes region

alterations reverberate through trophic levels, ulti-
mately impacting the distributional ecology of spe-
cies, such as the Partridge in the Moroccan land-
scape. This intricate nexus demands further explo-
ration, with implications for both fundamental eco-
logical theory and applied conservation practices in 
the face of ongoing climatic perturbations.

CONCLUSIONS

The present study delved into an examination 
of spatial and temporal dynamics of temperature, 
land use, and land cover within the Moroccan 
region, spanning the temporal epochs of 2000, 
2010, and 2021. The deduced spatial distribution 
of land surface temperature, contingent upon the 
normalized difference vegetation index, was pred-
icated upon multispectral remote sensing data. 
The obtained results can be used to understand 
the various environmental changes occurring over 
the period studied and their impact on terrestrial 
ecosystems and consequently, on changes in the 
distribution of partridge ecological niches. Signif-
icant changes in land use and land cover classes 
over time, clearly show that these changes are not 
uniform, as some classes have regressed, such as 
Dense Forest, Sparse/Scrub, Plantation, Barren/
Rocky and Barren, while others have increased, 
such as Agriculture, Moderately Dense Forest 
and Built up. The quantitative analysis between 

NDVI and LST indicates that there is a negative 
correlation between the density of the vegetation 
and the recorded surface temperatures. This find-
ing highlights the beneficial influence of vegeta-
tion on the thermal regulation of the environment, 
where the presence of vegetation helps to reduce 
local temperatures. These data were used to model 
the distribution of ecological niches for partridg-
es. This modeling provides an understanding of 
the environmental conditions that are favorable to 
the partridge’s habitat, as well as the factors that 
influence its presence or absence in the study re-
gion. The present work provides the first map of 
partridge potential range in the context of current 
climatic data. This original study for this emblem-
atic species will serve as the basis for any strategic 
planning for biodiversity conservation and sus-
tainable management of the partridge in Morocco.
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