Identyfikatory
Warianty tytułu
Wykorzystanie regresji procesu gausowskiego do identyfikacji nieliniowych procesów separacji magnetycznej
Języki publikacji
Abstrakty
This paper presents a novel approach utilizing Gaussian Process Regression (GPR) to identify dynamic models with nonlinear parameters in magnetic separation processes. It aims to address the complex and dynamic nature of these processes by employing advanced modeling methods. The effectiveness of GPR is demonstrated through its application to simulated signals representing real iron ore separation processes, highlighting its potential to enhance existing models and optimize processes. Conducted within the MATLAB, this research lays the groundwork for further advancement and practical implementation. The utilization of GPR in magnetic separation offers innovative modeling of nonlinear dynamic processes, promising improved efficiency and precision in industrial applications.
Niniejsza praca prezentuje nowatorskie podejście wykorzystujące regresję procesu Gaussa (Gaussian Process Regression, GPR) do identyfikacji modeli dynamicznych z parametrami nieliniowymi w procesach separacji magnetycznej. Celem jest uwzględnienie złożonego i dynamicznego charakteru tych procesów poprzez zastosowanie zaawansowanych metod modelowania. Skuteczność GPR jest demonstrowana poprzez jego zastosowanie do symulowanych sygnałów, reprezentujących rzeczywiste procesy separacji rudy żelaza, co podkreśla jego potencjał do ulepszania istniejących modeli oraz optymalizacji procesów. Badania przeprowadzone w środowisku MATLAB stanowią podstawę do dalszego rozwoju i praktycznej implementacji. Zastosowanie GPR w separacji magnetycznej pozwala na innowacyjne modelowanie nieliniowych procesów dynamicznych, obiecując poprawę wydajności i precyzji w zastosowaniach przemysłowych.
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- Kryvyi Rih National University, Kryvyi Rih, Ukraine
Bibliografia
- [1] Abrahamsen P. A: Review of Gaussian Random Fields and Correlation Functions. Apr. 1997 [https://doi.org/10.13140/RG.2.2.23937.20325].
- [2] Bakhrushyn V.Ye. Matematychni osnovy modelyuvannya system: navchal’nyy posibnykdlya studentiv. Classic Private University, Zaporizhzhia 2009..
- [3] Bilets’kyy V. S. et al.: Osnovy tekhniky ta tekhnolohiyi zbahachennya korysnykh kopalyn. Lira-K, Kiev 2020.
- [4] Dobbins M. et al.: Recent Advances in Magnetic Separator Designs and Applications. Heavy Minerals Conference – SAIMM, 2009, 63–70 [www.saimm.co.za/Conferences/HMC2009/063-070_Dobbins.pdf].
- [5] Drucker H. et al.: Support Vector Regression Machines. Advances in Neural Information Processing Systems 9, 1996, 155–161 [http://papers.neurips.cc/paper/1238-support-vector-regression-machines.pdf].
- [6] Duvenaud D.: Automatic Model Construction With Gaussian Processes Declaration. University of Cambridge, Doctor of Philosophy, 2014. [http://www.cs.toronto.edu/~duvenaud/thesis.pdf].
- [7] Jämsä-Jounela S.-L.: Current Status and Future Trends in the Automation of Mineral and Metal Processing. IFAC Proceedings 33(22), 2000, 83–94 [https://doi.org/10.1016/s1474-6670(17)36973-2].
- [8] Kocijan J., Ažman K.: An Example of Gaussian Process Model Identification. Conference MIPRO 2005:28, Ljubljana, Slovenia, 2005, 79–84 [http://www.researchgate.net/publication/228804422_An_example_of_Gaussian_process_model_identification].
- [9] Kocijan J., Murray-Smith R.: Nonlinear Predictive Control With a Gaussian Process Model. Switching and Learning in Feedback Systems Conference, 2003 185–200 [http://www.researchgate.net/publication/221185944_Nonlinear_Predictive_ Control_with_a_Gaussian_Process_Model].
- [10] Kocijan J. et al.: Predictive Control With Gaussian Process Models. IEEE Region Conference EUROCON 2003. IEEE, 2003, 352–56 [https://doi.org/10.1109/EURCON.2003.1248042].
- [11] Kocijan J. et al.: The Concept for Gaussian Process Model Based System Identification Toolbox. Proceedings of the 2007 International Conference on Computer Systems and Technologies (CompSysTech‘07), 1–6 [https://doi.org/10.1145/1330598.1330647].
- [12] Korniyenko V. I. et al.: Teoriya system keruvannya. NHU, Dnipro 2017.
- [13] Maryuta A. N. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykh fabrik. Nedra, Moscow 1983.
- [14] Morkun V., Tron V., Goncharov S.: Automation of the ore varieties recognition process in the technological process streams based on the dynamic effects of highenergy ultrasound. Metallurgical and Mining Industry 2, 2015, 31–34.
- [15] Morkun V., Morkun N., Pikilnyak A.: Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry 2, 2015, 35–38.
- [16] Morkun V., Tron V.: Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry 6, 2014, 4–7.
- [17] Morkun V., Morkun N., Tron V.: Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric uncertainty. Metallurgical and Mining Industry 5, 2015, 7–11.
- [18] Morkun V., Morkun N., Tron V.: Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry 10, 2015, 6–9.
- [19] Morkun V., Tcvirkun S.: Investigation of methods of fuzzy clustering for determining ore types. Metallurgical and Mining Industry 5, 2014, 11–14.
- [20] Morkun V., Morkun N., Pikilnyak A.: The study of volume ultrasonic waves propagation in the gas-containing iron ore pulp. Ultrasonics 56, 2015, 340–343.
- [21] Nesterov G. S.: Tekhnologicheskaya optimizatsiya obogatitel'nykh fabrik. Nedra, Moscow 1976.
- [22] Patil, S., Shruti P.: Linear With Polynomial Regression: Overview. International Journal of Applied Research 7(8), 2021, 273–275, [https://doi.org/10.22271/allresearch.2021.v7.i8d.8876].
- [23] Sbárbaro D., Villar R.: Advanced Control and Supervision of Mineral Processing Plants. Springer, 2011.
- [24] Svoboda J., Fujita T. Recent developments in magnetic methods of material separation. Minerals Engineering 16(9), 2003, 785–792, [https://doi.org/10.1016/s0892-6875(03)00212-7].
- [25] Thompson K. R.: Implementation of Gaussian Process Models for Nonlinear System Identification. 2009. University of Glasgow. Ph.D. thesis [https://www.researchgate.net/publication/258903887_Implementation_of_Gaussian_Process_models_for_nonlinear_system_identification].
- [26] Tripathy S. K., Suresh N.: Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral. Advanced Powder Technology 28(3), 2017, 1092–1102 [https://doi.org/10.1016/j.apt.2017.01.018].
- [27] Trombetta E. I. et al.: Nonlinear UGV Identification Methods via the Gaussian Process Regression Model for Control System Design. Applied Sciences 12(22), 2022, 1–13 [https://doi.org/10.3390/app122211769].
- [28] Trop A. E. et al.: Avtomaticheskoye upravleniye tekhnologicheskimi protsessami obogatitel'nykhfabrik. Nerda, Moscow 1986.
- [29] Vynohradov V. S. et al.: Avtomatizatsiya tekhnologicheskikh protsessov na gornorudnykh predpriyatiyakh. Nedra, Moscow 1984.
- [30] Wills B. A.: Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 2011.
- [31] Gaussian Process Regression Models – MATLAB and Simulink [https://www.mathworks.com/help/stats/gaussian-process-regression-models.html] (available: 28.02.2024).
- [32] Global Iron Ore Production Iron Content 2010-2022 [https://www.statista.com/statistics/589979/metal-content-of-the-global-iron-ore-production] (available: 28.02.2024).
- [33] Interactive Visualization of Gaussian Processes [https://www.infinitecuriosity.org/vizgp] (available: 28.02.2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38ccda6a-10ea-4a18-8e27-f0b96843d149