PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deflection ductility of slabs made of hybrid mesh-and-fibre-reinforced cement-based composite

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odkształcenie plastyczności płyt wykonanych z cementowego materiału kompozytowego wzmocnionego siatką hybrydową oraz włóknami
Języki publikacji
EN
Abstrakty
EN
Steel Mesh-Reinforced Cementitious Composites (SMRCC) (traditionally known as ferrocement) have been in existence for few decades, but have some limitations set on element thickness and number of reinforcing mesh layers and the resulting deflection ductility. Therefore, the author has made an attempt to explore whether deflection ductility will improve in mesh-reinforced cementitious composites (25 mm thick) if discontinuous fibres are added to slab elements. For this purpose, thin slab elements of dimensions 700 mm (length) × 200 mm (width) × 25 mm (thickness) were cast and subjected to four point bending tests. Based on the flexural tests conducted on SMRCC (Control Slab Elements, cast with Steel Mesh Volume of reinforcement, MVr=0.78, 0.94, and 1.23%) and Hybrid Mesh-and-Fibre-Reinforced Cement Based Composite (HMFRCBC) (Test Slab Elements, combining MVr=0.78, 0.94 and 1.23% and Polyolefin Fibre Volume fraction, PO-FVf=0.5-2.5% of volume of specimens, with 0.5% interval), load-deflection and the deflection ductility index were analyzed. From the flexural load-deflection curves it has been observed that HMFRCBC slabs demonstrate higher flexural load-carrying capacity and deflection ductility when compared to SMRCC slabs. This study shows that higher the polyolefin fibre volume fraction (PO-FVf) from 0.5 to 2.5% (with a 0.5% interval) in HMFRCBC slabs, the higher the flexural deflection ductility. The Deflection Ductility Index (DDI) of HMFRCBC (with 5 layers of mesh and PO-FVf=2.5%) is 4.5 times that of SMRCC. This study recommends that HMFRCBC can be used as an innovative construction material due to its higher flexural ductility characteristics.
PL
Cementowe materiały kompozytowe zbrojone siatką stalową (tradycyjnie znane jako siatkobeton) stanowią innowacyjny materiał składający się z hydraulicznej zaprawy cementowej oraz ciasno rozmieszczonych warstw ciągłej siatki stalowej o małej średnicy oczek do stworzenia sztywnej konstrukcji, a ze względu na swoją doskonałą wytrzymałość na zginanie są wykorzystywane jako prefabrykaty dachowe. Pomimo, że na przestrzeni ostatnich kilkudziesięciu lat na świecie wybudowano kilka konstrukcji siatkobetonowych (prefabrykowane i wylewane na miejscu pierwszorzędne oraz drugorzędne konstrukcje dachowe i elementy belkowe, panele ścienne, ściany zatrzymujące ziemię, prefabrykowane schody, ławki, sklepienia, kopuły, cienkie pergole oraz systemy ochrony przeciwsłonecznej, ściany graniczące z morzem, nadziemne zbiorniki wodne, podziemne zbiorniki ściekowe, baseny i łodzie – wymieniając jedynie kilka), istnieją pewne ograniczenia dotyczące grubości elementu, a także liczby warstw siatki zbrojeniowej oraz wynikowego odchylenia plastyczności. Plastyczność jest niezwykłym zjawiskiem umożliwiającym odkształcenie elementu przy lub w okolicach granicznego obciążenia niszczącego bez znacznej utraty jego wytrzymałości. O zachowaniu plastycznym świadczy jego zdolność do utrzymania wyższych poziomów obciążenia po pierwszym pękaniu na skutek dużych odkształceń. Poprzednie badania wskazują, że nieciągłe włókna mogą być dodane do matrycy cementowej cementowych materiałów kompozytowych zbrojonych siatką stalową w formie hybrydowej w celu poprawy jej wytrzymałości na zginanie oraz odchylenia plastyczności.
Rocznik
Strony
115--137
Opis fizyczny
Bibliogr. 45 poz., il., tab.
Twórcy
  • Department of Civil Engineering, Misrimal Navajee Munoth Jain Engineering College, Chennai, Tamil Nadu, India
Bibliografia
  • 1. A.E. Naaman, Ferrocement and Laminated Cementitious Composites, Techno Press 3000, Ann Arbor, Michigan, USA, 2000.
  • 2. ACI 549, State-of-the-Art Report on Ferrocement, ACI 549-R97 in Manual of Concrete Practice, American Concrete Institute, Farmington Hills, Michigan, 26 pages, 1997.
  • 3. H.M. Ibrahim, “Experimental investigation of ultimate capacity of wire mesh-reinforced cementitious slabs.” Construction and Building Materials, 25 (1): 251–259, 2011a, DOI: 10.1016/j.conbuildmat. 2010. 6. 032
  • 4. H.M. Ibrahim, "Shear capacity of ferrocement plates in flexure, Engineering Structures, 33(5): 1680-1686, 2011b, DOI: 10.1016/j.engstruct.2011.02.004
  • 5. M.J. Shannag and T.B. Ziyyad, “Flexural response of ferrocement with fibrous cementitious matrices.” Construction and Building Materials, 21(6): 1198-1205, 2007, DOI: 10.1016/j.conbuildmat.2006.06.021.
  • 6. S. Wang, A.E. Naaman and V.C. Li, "Bending response of hybrid ferrocement plates with meshes and fibres", Journal of Ferrocement, 34(1): 275-288, 2004, http://hdl.handle.net/2027.42/84723
  • 7. V.W.J. Lin, S.T. Quek and M. Maalej, “Static and dynamic tensile behaviour of PE-fibrous ferrocement.” Magazine of Concrete Research, 63(1): 61–73, 2011, DOI: 10.1680/macr.2011.63.1.61
  • 8. L. Andal, M.S., Palanichamy, and M. Sekar (2008), “Strength and durability of polymer and flyash modified ferrocement roofing/ flooring elements”, Proceedings of the 33rd Conference on Our World in Concrete and Structures, Singapore, 25-27 August, 2007, http://cipremier.com/1000033009.
  • 9. A.E. Naaman, “Evolution in ferrocement and thin-reinforced cementitious composites”, Arabian Journal for Science and Engineering, 37(2): 421-441, 2012, DOI:10.1007/s13369-012-0187-4
  • 10. P.B. Sakthivel, A. Ravichandran and N. Alagumurthi, "Flexural Strength and toughness of Polyolefin Fibre Reinforced Cementitious Composites embedded with Steel Mesh", Proceedings of the 3rd RILEM International Conference on Strain Hardening Cementitious Composites (SHCC3), Delft University of Technology, The Netherlands, 3-5th November, 441-448, 2014.
  • 11. P.B. Sakthivel, A. Ravichandran and N. Alagumurthi, N., "Experimental Studies to determine the Flexural and Cracking Performance of Hybrid Steel Mesh and Polyolefin Fibre Reinforced Cementitious Composites", RILEM –7th International Workshop on High Performance Fibre Reinforced Cement Composites (HPFRCC-7) conducted by the University of Stuttgart, Germany, 01-03 June 1-3, 2015, pp.343-350, 2015a
  • 12. P.B. Sakthivel, A. Ravichandran and N. Alagumurthi, "Flexural Behavior of Mesh-and-Fibre Reinforced Cementitious Composites", in Proceedings 11th International RILEM Symposium on Ferrocement and 3rd ICTRC International Conference on Textile Reinforced Concrete", (FERRO-11), held at RWTH Aachen University, Germany, June 07-10, pp.79-89, 2015b
  • 13. H.D. Yun, I.S. Yang, S.W. Kim, E. Jeom, C.S. Choi, and H. Fukuyama, H., “Mechanical properties of High-Performance Hybrid-Fibre Reinforced Cementitious Composites (HPHFRCCS).” Magazine of Concrete Research, 59(4): 257–271, 2007, DOI: 10.1680/macr.2007.59.4.257.
  • 14. P. Zhang, C. Liu, Q. Li, and T. Zhang (2013), “Effect of polypropylene fibre on fracture properties of cement treated crushed rock”, Composites: Part B, 55: 48-54, 2013, DOI:10.1016/j.compositesb.2013.06.005
  • 15. T. Han, W. Lin, A. Cheng, R. Huang and C. Huang, “Influence of polyolefin fibres on the engineering properties of cementbased composites containing silica fume”, Materials & Design, 37: 569-576, 2012, DOI:10.1016/j.matdes.2011.10.038
  • 16. S.F. Santos, G.H.D. Tonoli, J.E.B. Mejia, J. Fiorelli and H. Savastano Jr., “Non-conventional cement-based composites reinforced with vegetable fibres: A review of strategies to improve durability”, Materiales De Construccion, 65(317): 1-20, 2015, DOI:10.3989/mc.2015.05514
  • 17. A. Ghazy, M.T. Bassuoni, E. Maguire and M. O’Loan, “Properties of fibre-reinforced mortars incorporating nano-silica”, Fibres, 4(1), 6: 1-16, 2016, DOI: 10.3390/fib-4010006.
  • 18. M. Maalej and V.C. Li, "Flexural/tensile-strength ratio in Engineered Cementitious Composites", Journal of Materials in Civil Engineering, ASCE, 1994, 6(4): 513-528, 1994, DOI:10.1061/(ASCE)0899-1561(1994)6:4(513)
  • 19. M.Z. Hossain and A.S.M.A. Awal, “Flexural response of hybrid carbon fibre thin cement composites”, Construction and Building Materials, 25(2): 670-677, 2011a, DOI:10.1016/j.conbuildmat.2010.07022
  • 20. M.Z. Hossain and A.S.M.A. Awal, “Experimental validation of a theoretical model for flexural modulus of elasticity of thin cement composite”, Construction and Building Materials, 25(3): 1460-1465, 2011b, DOI:10.1016/j.conbuildmat.2010.09.018
  • 21. T.M. Elrakib, Performance Evaluation of HSC beams with low flexural reinforcement", HBRC Journal, 9(1): 49-59, 2013, DOI:10.1016/j.hbrcj.2012.12.006
  • 22. M.Z. Hossain and A.S.M.A. Awal, "A Study on flexural modulus and ductility of laminated cementitious composites", Malaysian Journal of Civil Engineering, 22(2):, 216-26, 2010.
  • 23. Z.S. Tabatabaei, J.S. Volz, D.I. Keener, and B.P. Gliha, “Comparative impact behavior of four long carbon fibre reinforced concretes.” Materials and Design, 55: 212-223, 2014, DOI:10.1016/ j.matdes.2013.09.048
  • 24. K. Tosun-Felekoglu and B. Felekoglu, "Effects of fibre hybridization on multiple cracking potential of cement-based composites under flexural loading", Construction and Building Materials, 4: 15-20, 2013, DOI:10.1016/j.conbuildmat.2012.09.115
  • 25. E. Ozbay, M. Sahmaran, H.E. Yucel, T.K. Erdem, M. Lachemi, and V.C. Li, "Effect of sustained flexural loading on self-healing of Engineered Cementitious Composites", Journal of Advanced Concrete Technology, 11(5): 167-179, 2013, DOI: 10.3151/jact.11.167
  • 26. W.N. Al-Rifaie and M.M. Joma'ah (2010), "Structural Behaviour of Ferrocement System for Roofing", Diyala Journal of Engineering Sciences, First Engineering Scientific Conference, College of Engineering, University of Diyala, 22-23 December, pp.237-248.
  • 27. IS 12269-1987 (Reaffirmed 2008), Specification for 53 Grade Ordinary Portland Cement, Bureau of Indian Standards, New Delhi, India
  • 28. IS:383-1987, Specification for Coarse and Fine Aggregates from Natural Sources for Concrete (Second Revision), Ninth Reprint, September 1993, Bureau of Indian Standards, New Delhi, India.
  • 29. P. Suthiwarapirak, T. Matsumoto and T. Kanda (2004), “Multiple cracking and fibre bridging characteristics of engineered cementitious composites under fatigue flexure”, Journal of Materials in Civil Engineering, 16(5): 433-443, DOI:10.1061/(ASCE)0899-1561(2004)16:5(433)
  • 30. M.A.A. Aldahdooh, N.M. Bunnori and M.A.M. Johari, “Influence of palm oil fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high performance fibre reinforced cementitious composites.” Materials and Design, 54: 694–701, 2014, DOI:10.1016/j.matdes.2013.08.094
  • 31. H.E. Yucel, H. Jashami and M. Sahmaran, "Thin ECC overlay systems for rehabilitation of rigid concrete pavements", Magazine of Concrete Research, 65(2), 108-20, 2013, DOI:10.1680/macr.12.00022
  • 32. JCSE-SF4, Methods of tests for flexural strength and flexural toughness of steel fibre reinforced concrete, Concrete Library of JSCE, Japan Society of Civil Engineers, Tokyo, 1984, 3, 58-61.
  • 33. ASTM C78/C78M-10, Standard Test Method for flexural strength of concrete (using simple beam with third point loading), ASTM International, 100 Bart Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA, 2010.
  • 34. M. Arif, P. Pankaj and S.K. Kaushik (1999), “Mechanical behavior of ferrocement composites: An Experimental Investigation”, Cement and Concrete Composites, 21(4): 301-312, DOI:10.1016/S0958-9465(99)00011-6
  • 35. A. Masood, M. Arif, S. Akhtar and M. Haquie (2003), "Performance of ferrocement panels in different environments", Cement and Concrete Research, 33(4): 555-562, DOI:10.1016/S0008-8846(02)01003-7
  • 36. S.S. Gweli, P.J. Nedwell and C.G. Bailey, “The use of high performance non-metallic fibre in ferrocement”, Proceedings of the third International Conference on Structural Engineering, , Mechanics and Computation, Cape Town, South Africa, Edited by A. Zingoni 10-12 September, 2007, Millpress, The Netherlands, pp.537-538.
  • 37. C.B. Cheah and M. Ramli, "Load capacity and crack development characteristics of HCWA-DSF high strength mortar ferrocement panels in flexure", Construction and Building Materials, 36: 348-357, 2012, DOI:101016/jconbuildmat.2012.05.034
  • 38. M.Z. Hossain, M. Rokonuzzaman and S. Inoue, "Flexural behavior of cement composites panels reinforced with different types of meshes", Proceedings of the 30th Conference on Our World in Concrete & Structures, 23-24 August, 2005, Singapore.
  • 39. R.J. Phalke and D.G. Gaidhankar, “Flexural behaviour of ferrocement slab panels using welded square mesh by incorporating steel fibres”, International Journal of Research in Engineering and Technology, 3(5): 756-763, 2014.
  • 40. S.F.U. Ahmed and H. Mihashi (2011), "Strain Hardening Behavior of light weight hybrid polyinyl alcohol (PVA) fibre reinforced cement composites", Materials and Structures, 44: 1179-1191, DOI:10.1617/s11527-010-9691-8
  • 41. P. Frantzis, "Effect of early-age temperature rise on the stability of rapid-hardening cement fibre composites", Journal of Materials in Civil Engineering, ASCE, Vol.18(4): 568-75, 2006, DOI:10.1061/(ASCE)0899-1561(2006)18:4(568)
  • 42. N. Abushawashi and V. Vimonsatit, “Influence of mixture, wire mesh and thickness on the flexural performance of hybrid PVA fibre ferrocement panels”, International Journal of Innovative Research in Science, Engineering and Technology, 3(9):15805-15812, 2014, DOI:10.15680/IJIRSET.2014.0309002
  • 43. F.U.A. Shaikh (2013), “Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites.” Materials and Design, 50: 674–682, 2013, DOI: 10.1016/j.matdes.2013.03.063
  • 44. H.N. Atahan, B.Y. Pekmezci and E.Y. Tuncel (2013), "Behaviour of PVA Fibre-Reinforced Cementitious Composites under static and impact flexural effects", Journal of Materials in Civil Engineering, ASCE, 25(10): 1438-1445, DOI:10.1061/(ASCE)MT.1943-5533.0000691
  • 45. P.B. Sakthivel, Flexural and Impact Performance of Hybrid mesh and fibre reinforced cement-based composites, Ph.D. Thesis, Pondicherry University, India, September 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38c3ad58-4bcc-4105-af8c-7e4836ba1582
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.