PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of the airframe repair node

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza węzła naprawczego pokrycia płatowca
Języki publikacji
EN
Abstrakty
EN
Polymer composite materials can be used both for the production of semi-monocoque structures and for the repair of aircraft airframes. Of all the elements of the semi-monocoque structure, the airframe skin is most often damaged during operation. The fragments of the skin between the frame elements of the semi-monocoque structure are considered as a thin-walled plate. The paper presents an analysis of the repair node of a metal plate subjected to uniform shear. The model of the repaired plate made in the Ansys Workbench environment was used for the analysis. The boundary conditions were defined by means of an articulated frame using the possibilities of the computing environment in the scope of, defining elements among others. The model was initially verified experimentally, assuming that it can be used to carry out a comparative analysis of two methods of repairing a damaged plate, using CFRP (Carbon Fiber Reinforced Polymer) and GFRP (Glass Fiber Reinforced Polymer) materials. Analyzing the obtained results, it was found that the repair does not restore the original strength of the damaged structure, however, it reduces the stress of the plate material around the opening by 10%.
PL
Polimerowe materiały kompozytowe mogą być wykorzystywane zarówno do wytwarzania elementów konstrukcji półskorupowych jak i do napraw już eksploatowanych metalowych płatowców statków powietrznych. Spośród wszystkich elementów konstrukcji półskorupowej, pokrycie płatowca ulega najczęściej uszkodzeniom eksploatacyjnym. Fragmenty pokrycia pomiędzy elementami szkieletu konstrukcji półskorupowej rozpatruje się jako płytę cienkościenną. W pracy przeprowadzono analizę węzła naprawczego metalowej płyty poddanej równomiernemu ścinaniu. Do analizy wykorzystano model naprawianej płyty wykonanej w środowisku Ansys Workbench. Warunki brzegowe zdefiniowano za pomocą przegubowej ramki wykorzystując możliwości środowiska obliczeniowego w zakresie m.in. definiowania kontaktów. Model wstępnie zweryfikowano eksperymentalnie, przyjmując założenie, że może być wykorzystywany do przeprowadzenia analizy porównawczej dwóch metod naprawy uszkodzonej płyty, z wykorzystaniem materiałów CFRP (Carbon Fibre Reinforced Plastic) oraz GFRP (Glass Fibre Reinforced Plastic). Analizując otrzymane wyniki stwierdzono, że naprawa nie przywraca pierwotnej wytrzymałości uszkodzonej struktury, jednakże zmniejsza wytężenie materiału płyty wokół otworu o 10%.
Rocznik
Tom
Strony
42--48
Opis fizyczny
Bibliogr. 23 poz., il. kolor., fot., rys.
Bibliografia
  • 1. Beukers A., Bersee H., Koussios S., Future “Aircraft Structures: From Metal to Composite Structures”. Springer. 2011.
  • 2. Standridge Michael., “Aerospace materials - past, present, and future”. Aerospace Manufacturing and Design. 2014.
  • 3. Cichosz Edmund, Kierkowski Jerzy, „Przybliżone obliczenia wytrzymałościowe płatowca”. WAT. Warszawa 1968.
  • 4. Bałon P., Świątoniowski A., Rejman E., Kiełbasa B., Smusz R., Szostak J., Kowalski Ł., Bałon N., Cieślik J., „Zastosowanie cienkościennych konstrukcji integralnych w lotnictwie na przykładzie SAT-AM”. Zeszyty naukowe Politechniki Rzeszowskiej 300, Mechanika 92 RUTMech, t. XXXVII, z. 92 (2020), s. 5-17.
  • 5. Zerbst U., Heinimann M., Donne C.D., Steglich D., “Fracture and damage mechanics modelling of thin-walled structures - An overview”. Engineering Fracture Mechanics 76 (2009) 5-43.
  • 6. Godzimirski J., „Naprawa płatowców”. WAW. Warszawa 1998.
  • 7. Tavares S.M.O., de Castro P.M.S.T., “An overview of fatigue in aircraft structures”. Fatigue & Fracture of Engineering Materials & Structures. 2017.
  • 8. Jones A., Peel C.J., “The analysis of aircraft component failures”. In: Goel V.S. editor. Analysing failures: the problems and the solutions. Cleveland, OH: American Society for Metals, 1986.
  • 9. Jones R., Chiu W.K., Smith R., “Airworthiness of composite repairs: failure mechanisms”. Engineering Failure Analysis. 1995: 2: 117-128.
  • 10. Galiński C., „Wybrane zagadnienia projektowania samolotów”. Biblioteka Instytutu Lotnictwa, Warszawa 2016.
  • 11. Lewitowicz J., „Podstawy eksploatacji statków powietrznych, cz. 4”. Wydawnictwo ITWL, Warszawa 2007.
  • 12. Goranson Ulf G., “Fatigue issues in aircraft maintenance and repairs”. Elsevier. Boeing Commercial Airplane Group, Seattle, WA, USA. 2017.
  • 13. Bouiadjra B.B., Benyahia F., Albedah A., Bouiadjra B.A.B., “Comparison between composite and metallic patches for repairing aircraft structures of aluminium alloy 7075 T6”. International Journal of Fatigue 80 (2015), 128-135.
  • 14. Kedward K., Kim H., “Joining and Repair of Composite Structures”. ASTM Stock Number: STP1455, International, USA, 2005.
  • 15. Katnam K.B., Da Silva L.F.M., Young T.M., “Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities”. Progress in Aerospace Sciences 61 (2013) 26-42.
  • 16. Baker A., Chalkley P., “Development of a generic repair joint for certification of bonded composite repairs”. International Journal of Adhesion and Adhesives, vol. 19, 1999.
  • 17. Romilly D.P., Clark R.J., “Elastic analysis of hybrid bonded joints and bonded composite repairs”. Composite Structures Volume 82, Issue 4, 2008, Pages 563-576.
  • 18. Chang P., Heller M., Wang J., Opie M., Yu X., “A New Approach for Hybrid Bonded Repair of Metallic Components” Journal article in preparation, 2017.
  • 19. Wang J., Baker A., Chang P., “Hybrid approaches for aircraft primary structure repairs” Composite Structures, 2018.
  • 20. Chester R., Chapter 2 Materials Selection and Engineering. “Advances on the Bonded Composite Rapair of Metallic Aircraft Structure”, vol. 1, pp. 19-40. Australia 2002.
  • 21. Baker A., Chester R., Mazza J., “Bonded Repair Technology for Aging Aircraft”. Defence Technical Information Center, Compilation Part Notice ADP014082. 2001.
  • 22. Godzimirski J., Tkaczuk S., “Numerical calculations of adhesive joints subjected to shearing”. Journal of Theoretical and Applied Mechanics. 45, 2 pp. 311-324, Warsaw 2007.
  • 23. Rośkowicz M., Tkaczuk S., „Połączenia adhezyjne w naprawach pokryć płatowców”. Technologia i Automatyzacja Montażu. 3/2010, pp. 32-35.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38bfd90c-7d81-4a16-8f08-aed366b140c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.