PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and analysis of corner scatter inclusion in photonic crystal-based ring resonator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the significant challenges in integrated optical systems is achieving miniaturization. Traditional components can limit the effective utilization of chip area. Devices with distinctive thickness and length characteristics, including the Mach Zehnder interferometer (MZI), the directional coupler, and waveguides, contribute to this issue, limiting the efficient use of chip area. Photonic crystals offer a solution to this problem. The proposed design results in two optical bandgap ranges, from 0.456586 to 0.675819 μm–1 and from 1.12855 to 1.16338 μm–1, both in TE mode with gap widths of 0.219233 and 0.34826 μm–1, respectively. The corresponding wavelength ranges are from 1479 to 2190 nm and 859 to 886 nm. The analysis of field propagation in the photonic crystal ring resonator (PCRR) is carried out using the finite-difference time domain (FDTD) method, while the bandgap analysis is performed by the plane wave expansion (PWE) method. This work primarily focuses on the incorporation of corner scatters in the PCRR. Corner scatters play a crucial role in guiding the field smoothly inside the ring, thus preventing the localization of light within the structure. After the simulation, various attributes were compared for both structures. At a resonant wavelength of 1550 nm, the input intensity is measured as 0.0591 a.u., and the output intensities for with and without corner scatter are 0.0458 and 0.0539 a.u., respectively.
Czasopismo
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203, India
  • Department of Humanities and Science (Physics), Rajalakshmi Engineering College, Rajalakshmi Nagar, Thandalam, Kanchipuram District, Tamil Nadu 602105, India
  • Department of Computer Science and Engineering, Velammal College of Engineering and Technology, Viraganoor, Madurai, Tamilnadu 625009, India
  • Department of Electronics and Communication Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625015, India
Bibliografia
  • [1] KUMAR V.D., SRINIVAS T., SELVARAJAN A., Investigation of ring resonators in photonic crystal circuits, Photonics and Nanostructures 2(3), 2004: 199-206. https://doi.org/10.1016/j.photonics.2004.11.001
  • [2] YANG W., JOSHI A., XIAO M., Single-photon all-optical switching using coupled microring resonators, Pramana – Journal of Physics 69(2), 2007: 219-228. https://doi.org/10.1007/s12043-007-0123-4
  • [3] YAN D., LI J., WANG Y., Photonic crystal terahertz wave logic AND-XOR gate, Laser Physics 30(1), 2020: 016208. https://doi.org/10.1088/1555-6611/ab5805
  • [4] NEFEDOV I.S., GUSYATNIKOV V.N., Optically controlled GaAs-GaAlAs photonic band gap structure, Journal of Optics A: Pure and Applied Optics 2(4), 2000: 344-347. https://doi.org/10.1088/1464-4258/ 2/4/318
  • [5] SRIDARSHINI T., INDIRA GANDHI S., JANNATH UI FIRTHOUSE V.N., Compact 4-bit all optical digital to analog converter based on photonic crystal ring resonators, Laser Physics 30(11), 2020: 116206. https://doi.org/10.1088/1555-6611/abbe1f
  • [6] NAGHIZADE S., SAGHAEI H., An ultra-fast optical analog-to-digital converter using nonlinear X-shaped photonic crystal ring resonators, Optical and Quantum Electronics 53(3), 2021: 149. https://doi.org/ 10.1007/s11082-021-02798-y
  • [7] RAMTIN FARD S., SALEHI M.R., ABIRI E., Ultra-fast all-optical ADC using nonlinear ring resonators in photonic crystal microstructure, Optical and Quantum Electronics 53(2), 2021: 120. https://doi.org/ 10.1007/s11082-021-02769-3
  • [8] NAGHIZADE S., SAGHAEI H., Tunable electro-optic analog-to-digital converter using graphene nanoshells in photonic crystal ring resonators, Journal of the Optical Society of America B 38(7), 2021: 2127-2134. https://doi.org/10.1364/JOSAB.423088
  • [9] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., A novel proposal for optical decoder switch based on photonic crystal ring resonators, Optical and Quantum Electronics 48(1), 2016: 20. https://doi.org/ 10.1007/s11082-015-0313-0
  • [10] SERAJMOHAMMADI S., ALIPOUR-BANAEI H., MEHDIZADEH F., Proposal for realizing an all-optical half adder based on photonic crystals, Applied Optics 57(7), 2018: 1617-1621. https://doi.org/10.1364/ AO.57.001617
  • [11] KAZEMI M.M., TEHRANI A.M., KHAN T.Z., NAMBOODIRI M., MATERNY A., Realization of an ultrafast all-optical Toffoli logic gate based on the phase relation between two second order nonlinear optical signals, Laser Physics 25(12), 2015: 125402. https://doi.org/10.1088/1054-660X/25/12/125402
  • [12] BENMERKHI A., BOUNOUIOUA A., BOUCHEMAT M., BOUCHEMAT T., Analysis of a photonic crystal temperature sensor based on Z-shaped ring resonator, Optical and Quantum Electronics 53(1), 2021: 41. https://doi.org/10.1007/s11082-020-02730-w
  • [13] BISWAS U., RAKSHIT J.K., DAS J., BHARTI G.K., SUTHAR B., AMPHAWAN A., NAJJAR M., Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator, Silicon 13(3), 2021: 885-892. https:// doi.org/10.1007/s12633-020-00489-z
  • [14] PATIL P.P., KAMATH S.P., UPADHYAYA A.M., SHARAN P., Design and analysis of photonic MEMS based micro ring resonators for pressure sensing application, Journal of Micromechanics and Microengineering 31(11), 2021: 115004. https://doi.org/10.1088/1361-6439/ac2bb1
  • [15] MORADI M., MOHAMMADI M., OLYAEE S., SEIFOURI M., Design and simulation of a fast all-optical modulator based on photonic crystal using ring resonators, Silicon 14(3), 2022: 765-771. https:// doi.org/10.1007/s12633-020-00891-7
  • [16] THIRUMARAN S., DHANABALAN S.S., SANNASI I.G., Design and analysis of photonic crystal ring resonator based 6 × 6 wavelength router for photonic integrated circuits, IET Optoelectronics 15(1), 2021: 40-47. https://doi.org/10.1049/ote2.12014
  • [17] MORADI M., MOHAMMADI M., OLYAEE S., SEIFOURI M., Design and simulation of a fast all-optical modulator based on photonic crystal using ring resonators, Silicon 14, 2022: 1-7. https://doi.org/ 10.1007/s12633-020-00891-7
  • [18] KAZANSKIY N.L., KHONINA S.N., BUTT M.A., A review of photonic sensors based on ring resonator structures: three widely used platforms and implications of sensing applications, Micromachines 14(5), 2023: 1080. https://doi.org/10.3390/mi14051080
  • [19] NOHOJI A.H.A., DANAIE M., Highly sensitive refractive index sensor based on photonic crystal ring resonators nested in a Mach–Zehnder interferometer, Optical and Quantum Electronics 54(9), 2022: 574. https://doi.org/10.1007/s11082-022-04006-x
  • [20] BLACK J.A., BRODNIK G., LIU H., YU S.P., CARLSON D.R., ZANG J., BRILES T.C., PAPP S.B., Optical-parametric oscillation in photonic-crystal ring resonators, Optica 9(10), 2022: 1183-1189. https://doi.org/10.1364/OPTICA.469210
  • [21] BISWAS U., KUMAR RAKSHIT J., Detection and analysis of hemoglobin concentration in blood with the help of photonic crystal based micro ring resonator structure, Optical and Quantum Electronics 52, 2020: 449. https://doi.org/10.1007/s11082-020-02566-4
  • [22] KOUDDAD E., NAOUM R., Optimization of an all-optical photonic crystal NOT logic gate using switch based on nonlinear Kerr effect and ring resonator, Sensor Letters 18(2), 2020: 89-94. https://doi.org/ 10.1166/sl.2020.4200
  • [23] QIANG Z., SOREF R.A., ZHOU W., Photonic crystal ring resonators: Characteristics and applications, Journal of Nanoscience and Nanotechnology 10(3), 2010: 1495-1507. https://doi.org/10.1166/ jnn.2010.2027
  • [24] KIM S., CAI J., JIANG J., NORDIN G.P., New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures, Optics Express 12(11), 2004: 2356-2364. https://doi.org/ 10.1364/OPEX.12.002356
  • [25] TANUSHI Y., YOKOYAMA S., Design and simulation of ring resonator optical switches using electrooptic materials, Japanese Journal of Applied Physics 45(4S), 2006: 3493-3497. https://doi.org/ 10.1143/JJAP.45.3493
  • [26] QIANG Z., ZHOU W., SOREF R.A., Optical add-drop filters based on photonic crystal ring resonators, Optics Express 15(4), 2007: 1823-1831. https://doi.org/10.1364/OE.15.001823
  • [27] ROBINSON S., NAKKEERAN R., Photonic crystal ring resonator based optical filters, [In] Advances in Photonic Crystals, [Ed.] V. Passaro, InTech, 2013. https://doi.org/10.5772/54533
  • [28] RABUS D.G., SADA C., Ring resonators: Theory and modeling, [In] Integrated Ring Resonators: A Compendium, Springer Series in Optical Sciences, Vol. 127, Springer, Cham, 2020: 3-46. https://doi.org/ 10.1007/978-3-030-60131-7_2
  • [29] MENÉNDEZ R.J.P., Fiber-optic ring resonator interferometer, [In] Interferometry-Recent Developments and Contemporary Applications, [Eds.] M. Bhowmick, B. Ullrich, IntechOpen, 2019, p. 130. https://doi.org/10.5772/intechopen.80569
  • [30] HENRIKSSON A., KASPER L., JÄGER M., NEUBAUER P., BIRKHOLZ M., An approach to ring resonator biosensing assisted by dielectrophoresis: Design, simulation and fabrication, Micromachines 11(11), 2020: 954. https://doi.org/10.3390/mi11110954
  • [31] DUARTE F.J., Tunable Laser Optics, CRC Press, United Kingdom, 2017.
  • [32] TAFLOVE A., HAGNESS S.C., PIKET-MAY M., Computational electromagnetics: The finite-difference time-domain method, [In] The Electrical Engineering Handbook, [Ed.] Wai-kai Chen, Academic Press, 2005: 629-670. https://doi.org/10.1016/B978-012170960-0/50046-3
  • [33] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008. R
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38baae81-ad5d-4095-8a25-5d3f4e1d1d3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.