PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparison of Untreated, Lime-Stabilised and Composted Wastewater Sludges from a Pulp, Board and Paper Mill Integrate as a Fertiliser Product

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the physical and chemical properties of untreated, lime-stabilised and composted wastewater sludges from a Finnish pulp, board and paper mill integrate were compared in order to assess their fertiliser properties based on the requirement of the Finnish Fertilizer Product Decree. Furthermore, the extraction properties of heavy metals in the sludges were assessed by the three-stage sequential extraction procedure of the Community Bureau of Reference (BCR) and the solubility indices for heavy metals were calculated in order to evaluate the release potential of elements from the sample (sludge) matrix. The results of this study indicated that the total heavy metal (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) concentrations in all sludges were lower than the statutory Finnish limit values for fertiliser products. However, the untreated sludge required either lime-stabilisation or composting in order to fulfil the Finnish maximum concentrations of pathogens (coliforms and Escherichia coli) for fertiliser products.
Rocznik
Strony
47--58
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Stora Enso International Oy, Imatra Research Centre, Tornansaarenraitti 48, FI-55800 Imatra, Finland
  • City of Kemi, Department of Environmental Protection, Valtakatu 26, FI-94100 Kemi, Finland
autor
  • Aalto University, School of Chemical Technology, Department of Bioproducts and Biosystems. PO Box 16300, FI-00076 Aalto, Finland
Bibliografia
  • 1. Anbu P., Kang C.H., Shin Y.J., So, J.S. 2016. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), article 250.
  • 2. Ayilara M.S., Olanrewaju O.S., Babalola O.O., Odeyemi O. 2020. Waste management through composting: Challenges and potentials. Sustainability, 12(11), article 4456.
  • 3. Azim K., Faissal Y., Soudi B., Perissol C., Roussos S., Alami I.T. 2018. Elucidation of functional chemical groups responsible of compost phytotoxicity using solid-state 13C NMR spectroscopy under different initial C/N ratios. Environmental Science and Pollution Research, 25(4), 3408–3422.
  • 4. Barthod J., Rumpel C., Dignac M-F. 2018. Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), article 17.
  • 5. Biswas D., Micallef S.A. 2019. Safety and Practice for Organic Food. Academic Press, London.
  • 6. Bohacz J. 2019. Composts and water extracts of lignocellulosic composts in the aspect of fertilization, humus-forming, sanitary, phytosanitary and phytotoxicity value assessment. Waste and Biomass Valorization, 10(10), 2837–2850.
  • 7. Bożym M., Siemiątkowski G. 2018. Characterization of composted sewage sludge during the maturation process: a pilot scale study. Environmental Science and Pollution Research, 25(34), 34332–34342.
  • 8. Chen P., Zheng H., Xu H., Gao Y., Ding X., Ma M. 2019. Microbial induced solidification and stabilization of municipal solid waste incineration fly ash with high alkalinity and heavy metal toxicity. PLOS ONE, 14(10), paper e02223900
  • 9. Collivignarelli M.C., Abbà A., Frattarola A., Miino M.C., Padovani S., Katsoyiannis I., Torretta V. 2019. Legislation for the reuse of biosolids on agricultural land in European Union: Overview. Sustainability, 11(21), paper 6015.
  • 10. Damasceno O.I.C., Reis C., Reis E.L., Bellato C.R., Fidéncio P.H. 2015. Assessment of bioavailability of heavy metals after vermicomposting in the presence of electronic waste. Revista Brasileira de Ciéncia do Solo, 39(6), 1786–1795.
  • 11. Devi P., Saroha A.K. 2014. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and ecotoxicity of heavy metals. Bioresource Technology, 162, 308–315.
  • 12. Elmaslar-Özbaş E., Balkaya N. 2012. Extraction of heavy metals from compost using a mixture of Na2EDTA and Na2S2O5: column studies. Journal of Soil Science and Plant Nutrition, 12(3), 525–534.
  • 13. Fatunla K., Inam E., Essien J., Dan E., Odon A., Kang S., Semple K.T. 2017. Influence of composting and thermal processing on the survival of microbial pathogens and nutritional status of Nigeria sewage sludge. International Journal of Recycling of Organic Waste in Agriculture, 6(4), 301–310.
  • 14. Fei-Baffoe B., Osei K., Agyapong E.A., Nyankson E.A. 2016. Co-composting of organic solid waste and sewage sludge – a waste management options for University Campus. International Journal of Environment, 5(1), 14–31.
  • 15. Gallardo F., Briceño G., Flores M.J., Diez M.C. 2016. Recycling pulp mill sludge to volcanic soil: a column leaching study. Journal of Soil Science and Plant Nutrition. 16(1), 248–261.
  • 16. Guerriero G., Stokes I., Valle N., Hausman J.F., Exley C. 2020. Visualizing silicon in plants: Histochemistry, silica sculptures and elemental imaging. Cell, 9(4), article 1066.
  • 17. Hazarika, J., Ghosh U., Kalamdhad A.S., Khwairakpam M., Singh J. 2018. Fractionation and reduction in bioavailability of toxic heavy metals during rotary drum composting of paper mill sludge. Nature Environmental and Pollution Technology, 17(3), 999–1004.
  • 18. Jamroz E., Bekier J., Medynska-Juraszek A., Kaluza-Haladyn A., Cwielag-Piasecka I., Bednik M. 2020. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: a case study. Scientific Reports, 10, article 12842.
  • 19. Kaakinen J., Kuokkanen T., Pesonen J., Välimäki I. 2014. Comparison of different standard methods to evaluate the total concentrations of heavy metals in waste rock. Soil and Sediment Contamination: An International Journal, 23(4), 437–451.
  • 20. Kinnarinen T., Golmaei M., Jernström E., Häkkinen A. 2016. Separation, treatment and utilization of inorganic residues of chemical pulp mills. Journal of Cleaner Production, 133, 953–964.
  • 21. Luo J., Li A., Huang D., Ma J., Tang J. 2016. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge. Cogent Engineering, 3(1), article 1163018.
  • 22. Luukkonen T., Prokkola H., Pehkonen S.O. 2020. Peracetic acid for conditioning of municipal wastewater sludge: Hygienization, odor control, and fertilizing properties. Waste Management, 2020, 102, 371–379.
  • 23. Machado I., Garrido V., Hernandez L.I., Botero J., Bastida N., San-Roman B., Grillo M., Hernandez F. 2019. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes. Analytica Chimica Acta, 1054, 157–166.
  • 24. Minolfi G., Jarva J., Tarvainen T. 2017. Humus samples as an indicator of long-term anthropogenic input – A case study from southern Finland. Journal of Geochemical Exploration. 181, 205–218.
  • 25. Muscio A., Sisto R. 2020. Are agri-food systems really switching to a circular economy model? Implications for European research and innovation policy. Sustainability, 12(14), article 5554.
  • 26. Mäkelä-Kurtto R., Eurola M., Justén A., Backma B., Luona S., Karttunen V., Ruskeeniemi, T. 2007. Arsenic and other elements in agro-ecosystems in Finland and particularly in the Pirkanmaa region. Geology Survey of Finland, Miscellaneous Publications. GTK, Espoo, Finland.
  • 27. Nafees M., Shams A.B., Saiqa Z. 2018. Investigation of chemical composition and nutritional values of pulp and paper mill sludge compost. Technogenic and Ecological Safety, 4(2), 112–120.
  • 28. N`Dayegamiye A., Nyiraneza J., Giroux M., Grenier M., Drapeau A. 2013. Manure and paper mill sludge application effects on potato yield, nitrogen efficiency and disease incidence. Agronomy, 3(1), 43–58.
  • 29. Puyuelo B., Ponsá S., Gea T., Sánchez A. 2011. Determining C/N ratios for typical organic wastes using biodegradable fractions. Chemosphere, 85(4), 653–659.
  • 30. Pöykiö R., Watkins G., Dahl O. 2019. Characterisation of municipal sewage sludge as a soil improver and a fertilizer product. Ecological Chemistry Engineering S, 26(3), 547–557.
  • 31. Rasa K., Pennanen T., Peltoniemi K., Velmala S., Fritze, H., Kaseva, J., Joona J., Uusitalo R. Pulp and paper mill sludges decrease soil erodibility. Journal of Environmental Quality, 50(1), 172–184.
  • 32. Ribeiro P., Albuquerque A., Quinta-Nova L., Cavaleiro V. 2010. Recycling pulp mill sludge to improve soil fertility using GIS tools. Resources, Conservation and Recycling, 54(12), 1303–1311.
  • 33. Singh J., Kalamdhad A.S. 2014. Effect of carbide sludge (lime) on bioavailability and leachability of heavy metals during rotary drum composting of water hyacinth. Chemical Speciation and Bioavailability, 26(2), 76–84.
  • 34. Thyagarajan L.P., Meenambal T., Mangaleshwaran L., Lakshminarasimaiah N., Ramesh N. 2010. Recycling of pulp and paper industry sludge with saw dust by aerobic composting method. Nature Environment and Pollution Technology, 9(1), 149–154.
  • 35. Watkins G., Mäkelä M., Dahl O. 2010. Innovative use potential of industrial residues from the steel, paper and pulp industries – a preliminary study. Progress in Industrial Ecology – An International Journal, 7(3), 185–204.
  • 36. Wiater J. 2020. Changes in the C:N ratio in the sludge treated with natural methods. Journal of Ecological Engineering, 21(5), 240–245.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38b6f061-4973-459a-9c31-0f8833c92f52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.