PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Coastal upwelling by wind-driven forcing in the Caspian Sea: A numerical analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, wind-driven coastal upwelling in the Caspian Sea was investigated using a developed three-dimensional hydrodynamic numerical model based on the Princeton Ocean Model (POM). The model was forced with wind fields and atmospheric fluxes from the ECMWF database and it considers freshwater inflows from the Volga, Kura and Ural Rivers. This model was implemented for 10 years (2008–2018). Findings indicated that the upwelling in the Caspian Sea was due to effects of wind and bottom topography, often occurring from May to September. In June and July, in the eastern part of the middle and sometimes southern basins, up to 3°C water temperature difference occurs between coastal and offshore areas. The vertical temperature gradient in the middle basin was larger than that in the southern basin. Upwelling in August in the eastern coasts of the middle basin within 25 km of coast from the depth of 15 m to the surface was shown, which was due to the effects of wind and bottom topography. In the middle basin, the highest vertical velocities caused by upwelling in June, July and August were 12, 13.82, and 10.36 m/day, respectively.
Czasopismo
Rocznik
Strony
363--375
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
  • Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
Bibliografia
  • 1. Anand, P., Issac, P., Raghunadha Rao, A., 2019. Observed Inter-annual Variability of upwelling characteristics during 2016-2017: A Study using Princeton Ocean Model. Defence Sci. J. 69(2), 142-148. https://doi.org/10.14429/dsj.69.14218
  • 2. Antonov, J.I., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Garcia, H.E., Levitus, S., 2006. World Ocean Atlas 2005, vol. 2: Salinity. NOAA Atlas NESDIS, 62(2). NOAA: [s.l.], 182 pp.
  • 3. Arpe, K., Tsuang, B.-J., Tseng, Y.-H., Liu, X.-Y., Leroy, S.A.G., 2018. Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-s-cale atmospheric circulation. Theor. Appl. Climatol. 136 (1—2), 475-488.
  • 4. Blumberg, A.F., Mellor, G.L, 1987. A Description of a Three-Dimensional Coastal Ocean Circulation Model. In: Heaps, N.S. (Ed.), Coastal and Estuarine Sciences, Book 4. Am. Geophys. Union, 1-6. https://doi.org/10.1029/CO004p0001
  • 5. Bohluly, A., Sadat Esfahani, F., Montazeri Namin, M., Chegini, F., 2018. Evaluation of wind induced currents modeling along the Southern Caspian Sea. Cont. Shelf Res. 153, 50-63. https://doi.org/10.1016/j.csr.2017.12.008
  • 6. Brink, K.H., 1983. The near-surface dynamics of coastal upwelling. Progr. Oceanogr. 12 (3), 223-257. https://doi.org/10.1016/0079-6611(83)90009-5
  • 7. Closset, I., McNair, H.M., Brzezinski, M.A., Krause, J.W., Thamatrakoln, K., Jones, J., 2021. Diatom response to alterations in upwelling and nutrient dynamics associated with climate forcing in the California current system. Limnol. Oceanogr. 66, 1578-1593. https://doi.org/10.1002/Ino.11705
  • 8. Dumont, H.J., 1998. The Caspian lake: History, biota, structure, and function. Limnol. Oceanogr. 43 (1), 44-52.
  • 9. Ghaffari, P., Isachsen, P.E., LaCasce, J.H., 2013. Topographic effects on current variabilityin the Caspian Sea. J. Geophys. Res.-Oceans, 118 (12), 7107-7116. https://doi.org/10.1002/2013JC009128
  • 10. Gunduz, M., Özsoy, E., 2014. Modelling seasonal circulation and thermohaline structure of the Caspian Sea. Ocean Sci. 10 (3),459-471. https://doi.org/10.5194/os-10-459-2014
  • 11. Hall, J.K., 2002. Bathymetric compilations of the seas around Israel 1: The Caspian and Black Seas. GSI Current Res. 13, 105-108.
  • 12. Ibrayev, R.A., Özsoy, E., Schrum, C., Sur, H.I., 2010. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci. 6 (1), 311-329. https://doi.org/10.5194/os-6-311-2010
  • 13. Kämpf, J., Chapman, P., 2016. Upwelling systems of the world. Springer Int. Pub., Switzerland, XV, 433 pp. https://doi.org/10.1007/978-3-319-42524-5
  • 14. Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. 2, 27-41. https://doi.org/10.5194/os-2-27-2006
  • 15. Kara, A.B., Wallcraft, A.J., Metzger, E.J., Gunduz, M., 2010. Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea. Cont. Shelf. Res. 30 (10—11), 1211-1225. https://doi.org/10.1016/j.csr.2010.03.011
  • 16. Kitazawa, D., Yang, J., 2012. Numerical analysis of water circulation and thermohalinestructures in the Caspian Sea. J. Mar. Sci. Technol. 17 (2), 168-180. https://doi.org/10.1007/s00773-012-0159-0
  • 17. Knysh, V.V., Ibrayev, R.A., Korotaev, G.K., Inyushina, N.V., 2008. Seasonal variability of climatic currents in the Caspian Sea reconstructed by assimilation of climatic temperature and salinity into the model of water circulation. Izv. Atmos. Ocean Phys. 44 (2), 236-249. https://doi.org/10.1134/S0001433808020114
  • 18. Kosarev, A.N., Yablonskaya, E.A., 1994. The Caspian Sea. SPB Academic publisher, Russia, 259 pp.
  • 19. Kostianoy, A., Kosarev, A., 2005. The Caspian Sea environment. Springer, Berlin, XIV, 272 pp. https://doi.org/10.1007/b138238
  • 20. Lavrova, O.Y., Kostianoy, A.G., Lebedev, S.A., Mityagina, M.I., Ginzburg, A.I., Sheremet, N.A., 2011. Complex satellite monitoring of the Russian seas. Space Research Institute of RAS, Moscow.
  • 21. Li, Y., Peng, S., Wang, J., Yan, J., Huang, H., 2018. On the mechanism of the generation and interannual variations of the summer upwellings west and southwest off the Hainan Island. J. Grophus. Res.-Oceans, 123, 8247-8263. https://doi.org/10.1029/2018JC014226
  • 22. Mansoury, M., Sadrinasab, M., Akbarinasab, M., 2015. Modeling of salinity and temperature field structure in the Caspian Sea using POM model. Hydrophysics 1 (1), 1-13.
  • 23. Medvedev, I.P., Kulikov, E.A., Fine, I.V., 2020. Numerical modeling of the Caspian Sea tides. Ocean Sci. 16, 209-219. https://doi.org/10.5194/os-16-209-2020
  • 24. Mellor, G.L., Blumberg, A.F., 1985. Modeling vertical and horizontal diffusivities with the sigma coordinate system. Mon. Weather Rev. 113 (8), 1379-1383. https://doi.org/10.1175/1520-0493(1985)113<1379:MVAHDW>2.0.CO;2
  • 25. Meunier, T., Rossi, V., Morel, Y., Carton, X., 2010. Influence of bottom topography on an upwellingcurrent: Generation of Long Trapped Filaments. Ocean Model. 35 (4), 277-303. https://doi.org/10.1016/j.ocemod.2010.08.004
  • 26. Nigam, T., Pant, V., Prakash, K.R., 2018. Impact of Indian Ocean dipole on the coastal upwelling features off the southwest coast of India. Ocean Dynam. 68, 663-676. https://doi.org/10.1007/s10236-018-1152-x
  • 27. Oey, L., Chang, Y.L., Lin, Y.C., Chang, M.C., Xu, F., Lu, H.F., 2013. ATOP-The Advanced Taiwan Ocean Prediction System Based on the mpiPOM. Part 1: Model Descriptions, Analyses and Results. Terr. Atmos. Ocean Sci. 24 (1), 137-158. https://doi.org/10.3319/TAO.2012.09.12.01(Oc)
  • 28. Olita, A., Ribotti, A., Fazioli, L., Perilli, A., Sorgente, R., 2013. Surface circulation and upwelling in the Sardinia Sea: A numerical study. Cont. Shelf Res. 71, 95-108. https://doi.org/10.1016/j.csr.2013.10.011
  • 29. Sadrinasab, M., Kämpf, J., 2004. Three dimensional flushing Times of the Persian Gulf. Geophys. Res. Lett. 31, L24301. https://doi.org/10.1029/2004GL020425
  • 30. Shanks, A.L., Largier, J., Brink, L., Brubaker, J., Hooff, R., 2000. Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnol. Oceanogr. 45 (1), 230-236. https://doi.org/10.4319/lo.2000.45.1.0230
  • 31. Shiea, M., Bidokhti, A.A., 2015. The Study of upwelling phenomenon in the eastern coasts of the Middle Caspian basin using numerical simulation. Earth Space Phys. 41 (3), 535-545. https://doi.org/10.22059/jesphys.2015.55105
  • 32. Shiea, M., Chegini, V., Bidokhti, A.A., 2016. Impact of wind and thermal forcing on the seasonal variation dimensional circulation in the Caspian Sea. Indian J. Geo-Mar. Sci. 45 (5), 671-686.
  • 33. Su, J., Pohlmann, T., 2009. Wind and topography influence on an upwelling system at the eastern Hainan coast. J. Geophys. Res. 114, C06017. https://doi.org/10.1029/2008JC005018
  • 34. Sun, Y.-J., Jalon-Rojas, I., Wang, X.H., Jiang, D., 2017. Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011. Estuar. Coast. Shelf. Sci. 206, 101-115. https://doi.org/10.1016/j.ecss.2017.11.022
  • 35. Sur, H.I., Özsoy, E., Ibrayev, R., 2000. Satellite-derived flow characteristics of the Caspian Sea. In: Elsevier Oceanography Series, Vol. 63, 289-297.
  • 36. Turuncoglu, U.U., Giuliani, G., Elguindi, N., Giorgi, F., 2013. Modeling the Caspian Seaand its catchment area using a coupled regional atmosphere-ocean model (RegCM4-ROMS): model design and preliminary results. Geosci. Model Dev. 6, 283-299. https://doi.org/10.5194/gmd-6-283-2013
  • 37. Tuzhilkin, V.S., Kosarev, A.N., 2005. Thermohaline structure and general circulation of the Caspian Sea waters. In: Kostianoy, A.G., Kosarev, A.N. (Eds.), The Caspian Sea Environment, The Handbook of Environmental Chemistry, vol. 5P. Springer, Berlin, Heidelberg, 33-57. https://doi.org/10.1007/698_5_003
  • 38. UNESCO-IHP-IOC-IAEA, 1996. Workshop on sea level rise and multidisciplinary studies of environmental processes in the Caspian region, IOC workshop No 108. 9—12 May, Paris, France.
  • 39. Wirasatriya, JA., Setiawan, J.D., Sugianto, D.N., Rosyadi, I.A., Haryadi, H., Winarso, G., Setiawan, R.Y., Susanto, R.D., 2020. Ekman dynamics variability along the southern coast of Java revealed by satellite data. Int. J. Remote Sens. 41 (21), 8475-8496. https://doi.org/10.1080/01431161.2020.1797215
  • 40. Zereshkian, S., Mansoury, D., 2020. Evaluation of ocean thermal energy for supplying the electric power of offshore oil and gas platforms. J. Earth Space Phys. 46 (2), 331-345. https://doi.org/10.22059/jesphys.2020.289441.1007161
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38aedc97-d73e-4186-8c1b-1b32424c4ec9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.