PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of low-temperature plasmas formed in low-density gases surrounding laser-produced plasmas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-temperature plasma production is possible as a result of photoionization using high-intensity extreme ultraviolet (EUV) and soft X-ray (SXR) pulses. Plasma of this type is also present in outer space, e.g., aurora borealis. It also occurs when high-velocity objects enter the atmosphere, during which period high temperatures can be produced locally by friction. Low-temperature plasma is also formed in an ambient gas surrounding the hot laser-produced plasma (LPP). In this work, a special system has been prepared for investigation of this type of plasma. The LPP was created inside a chamber fi lled with a gas under a low pressure, of the order of 1–50 mbar, by a laser pulse (3–9 J, 1–8 ns) focused onto a gas puff target. In such a case, the SXR/EUV radiation emitted from the LPP was partially absorbed in the low-density gas. In this case, high- and low-temperature plasmas (Te ~100 eV and ~1 eV, respectively) were created locally in the chamber. Investigation of the EUV-induced plasmas was performed mainly using spectral methods in ultraviolet/visible (UV/VIS) light. The measurements were performed using an echelle spectrometer, and additionally, spatial–temporal measurements were performed using an optical streak camera. Spectral analysis was supported by the PGOPHER numerical code.
Czasopismo
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
autor
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
  • Institute of Optoelectronics Military University of Technology Kaliskiego 2 St., 00-908 Warsaw, Poland
Bibliografia
  • 1. Hu, R., Seager, S., & Bains, W. (2012). Photochemistry in terrestrial exoplanet atmospheres I: Photochemistry model and benchmark cases. Astrophys. J., 761(2), 166. DOI: 10.1088/0004-637X/761/2/166.
  • 2. Rimme, P. B., Ferus, M., & Waldmann, I. P. (2019). Identifiable acetylene features predicted for young Earth-like exoplanets with reducing atmospheres undergoing heavy bombardment. Astrophys. J., 888(1), 21. DOI: 10.3847/1538-4357/ab55e8.
  • 3. Dobrijevic, M., & Parisot, J. P. (1995). Numerical simulation of organic compounds formation in planetary atmospheres: Comparison with laboratory experiments. Adv. Space Res., 15(10), 1–4. DOI: 10.1016/0273-1177(94)00143-O.
  • 4. Löhle, S., Zander, F., & Hermann, T. A. (2017). Experimental simulation of meteorite ablation during Earth entry using a plasma wind tunnel. Astrophys. J., 837(2), 170–178. DOI: 10.3847/1538-4357/aa5cb5.
  • 5. Bartnik, A., Skrzeczanowski, W., & Wachulak, P. (2021). Spectral investigations of low-temperature plasma induced in CO2 gas by nanosecond pulses of extreme ultraviolet (EUV). Plasma Sources Sci. Technol., 30(11), 115008. DOI: 10.1088/1361-6595/ac2e9a.
  • 6. Skrzeczanowski, W., & Długaszek, M. (2021). Al. and Si quantitative analysis in aqueous solutions by LIBS method. Talanta, 225, 121916. DOI: 10.1016/j.talanta.2020.121916.
  • 7. Tellinghuisen, P. C., Tellinghuisen, J., & Tisone, G. C. (1978). Spectroscopic studies of diatomic noble gas halides. III. Analysis of XeF 3500 Å band system. J. Chem. Phys., 68(11), 5187–5198. DOI: 10.1063/1.435582.
  • 8. Tellinghuisen, P. C., Tellinghuisen, J., & Coxon, J. A. (1978). Spectroscopic studies of diatomic noble gas halides. IV. Vibrational and rotational constants for the X, B, and D states of XeF. J. Chem. Phys., 68(11), 5177–5186. DOI: 10.1063/1.435583.
  • 9. Tellinghuisen, J., Hays, A. K., & Hoffman, J. M. (1976). Spectroscopic studies of diatomic noble gas halides. II. Analysis of bound-free emission from XeBr, XeI, and KrF. J. Chem. Phys., 65(11), 4473–4482. DOI: 10.1063/1.432994.
  • 10. Huber, K. P., & Herzberg, G. (1979). Molecular spectra and molecular structure, IV. Constants of diatomic molecules. New York: Springer.
  • 11. Bartnik, A., Jach, K., & Świerczyński, R. (2022). Dynamics of plasmas produced by a laser pulse, inside a dense gaseous target, formed in an ambient gas. Phys. Plasmas, 29(9), 093302. DOI: 10.1063/5.0099683.
  • 12. Western, C. M. (2016). PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf., 186,221–242. DOI: 10.1016/j.jqsrt.2016.04.010.
  • 13. National Institute of Standards and Technology. (2021).The Digital Millennium Copyright Act (DMCA). Updated October 1, 2021, from https://webbook.nist.gov/chemistry.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38ad666e-e1dd-42bd-84d3-9ba07997f4c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.