PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Aegle marmelos leaf extract based synthesis of nanoiron and nanoiron+Au particles for degradation of methylene blue

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, nanoiron and nanoiron+Au particles were synthesised using aqueous Aegle marmelos extract using a facile and one-pot approach. Lower size non-magnetic nanoiron (~34 nm) and nanoiron (~34 nm)+Au particles (1 to 1.5 μm) were produced from the same medium individually. Nanoparticles suspension behaviour and structural characterisations were carried out by UV-Vis spectroscopy, electron microscopy and by X-ray diffraction techniques. Primarily, for synthesis, a simple bioreduction approach generated amorphous nanoiron particles, which on annealing produced magnetic maghemite, γ-Fe2O3 type nanoparticles with sizes 100 to 1000 nm. Posteriorly, the bioreduction process also produces nanoiron+Au particles and can be used for multifunctional applications. As a model application, catalytic application of the as-prepared nanoiron and nanoiron+Au particles towards methylene blue, a thiazine dye degradation is investigated and found to be effective within 20 min. Langmuir-Hinshelwood kinetic model was exploited to know the degradation behaviour, and the model was found to be fit based on R2 values with the observed experimental data. We suggest that the formed highly stable nanoiron particles with in situ stabilisation offer benefits like consistency, environmental friendliness and suits well for large-scale applicability.
Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
  • Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
  • Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
  • Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
Bibliografia
  • [1] Nikolaidis P. Analysis of Green Methods to Synthesize Nanomaterials. Green Synthesis of Nanomaterials for Bioenergy Applications. John Wiley Sons, Ltd; 2020. p. 125-44. DOI: 10.1002/9781119576785.ch5.
  • [2] Rao KJ, Paria S. Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sust Chem Eng 2015. DOI: 10.1021/acssuschemeng.5b00022.
  • [3] Wu C-H, Tsai S-B, Liu W, Shao X-F, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28:7-10. DOI: 10.2478/eces-2021-0001.
  • [4] Cepoi L, Zinicovscaia I, Chiriac T, Rudi L, Yushin N, Miscu V. Silver and gold ions recovery from batch systems using biomass. Ecol Chem Eng S. 2019;26:229-40. DOI: 10.1515/eces-2019-0029.
  • [5] Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir. 2011;27:264-71. DOI: 10.1021/la103190n.
  • [6] Talebpour F, Ghahghaei A. Effect of green synthesis of gold nanoparticles (AuNPs) from Hibiscus sabdariffa on the aggregation of α-Lactalbumin. Int J Pept Res Ther. 2020;26:2297-306. DOI: 10.1007/s10989-020-10023-9.
  • [7] Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using Astragalus tribuloides Delile. Root extract: Characterization, antioxidant, antibacterial, and antiinflammatory activities. Nanomaterials. 2020;10:2383. DOI: 10.3390/nano10122383.
  • [8] Alawfi AA, Henari FZ, Younis A, Manaa H. Bio-inspired synthesis of silver nanoparticles using Hibiscus Tiliaceus L. flower extracts for improved optical characteristics. J Mater Sci: Mater Electron. 2020. DOI: 10.1007/s10854-020-04619-6.
  • [9] Kamala Nalini SP, Vijayaraghavan K. Green synthesis of silver and gold nanoparticles using aloe vera gel and determining its antimicrobial properties on nanoparticle impregnated cotton fabric. J Nanotechnol Res. 2020;2:42-50. DOI: 10.26502/jnr.2688-85210015.
  • [10] Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir. 2014;30:5982-8. DOI: 10.1021/la5011924.
  • [11] Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35-44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999464/.
  • [12] Masarovičová E, Kráľová K. Metal nanoparticles and plants. Ecol Chem Eng S. 2013;20:9-22. DOI: 10.2478/eces-2013-0001.
  • [13] Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surfaces B: Biointerfaces. 2009;71:113-8. DOI: 10.1016/j.colsurfb.2009.01.012.
  • [14] Keijok WJ, Pereira RHA, Alvarez LAC, Prado AR, da Silva AR, Ribeiro J, et al. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Reports. 2019;9:16019. DOI: 10.1038/s41598-019-52496-9.
  • [15] Doan V-D, Thieu AT, Nguyen T-D, Nguyen V-C, Cao X-T, Nguyen TL-H, et al. Biosynthesis of gold nanoparticles using Litsea cubeba fruit extract for catalytic reduction of 4-nitrophenol. J Nanomaterials. 2020;2020:10. DOI: 10.1155/2020/4548790.
  • [16] Padil VVT, Wacławek S, Černík M. Green synthesis: Nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016;23:533-57. DOI: 10.1515/eces-2016-0038.
  • [17] Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49-67. DOI: 10.2147/NSA.S99986.
  • [18] Wang Z, Zhao L, Yang P, Lv Z, Sun H, Jiang Q. Water-soluble amorphous iron oxide nanoparticles synthesized by a quickly pestling and nontoxic method at room temperature as MRI contrast agents. Chem Eng J. 2014;235:231-5. DOI: 10.1016/j.cej.2013.09.042.
  • [19] Pavelková A, Stejskal V, Vološčuková O, Nosek J. Cost-effective remediation using microscale ZVI: Comparison of commercially available products. Ecol Chem Eng S. 2020;27:211-24. DOI: 10.2478/eces-2020-0014.
  • [20] Wu Z, Su X, Lin Z, Khan NI, Owens G, Chen Z. Removal of As(V) by iron-based nanoparticles synthesized via the complexation of biomolecules in green tea extracts and an iron salt. Sci Total Environ. 2020:142883. DOI: 10.1016/j.scitotenv.2020.142883.
  • [21] Herrera-Becerra R, Rius JL, Zorrilla C. Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A. 2010;100:453-9. DOI: 10.1007/s00339-010-5903-x.
  • [22] Bibi I, Nazar N, Ata S, Sultan M, Ali A, Abbas A, et al. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J Materials Res Technol. 2019;8:6115-24. DOI: 10.1016/j.jmrt.2019.10.006.
  • [23] Jagajjanani Rao K, Paria S. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Materials Res Bull. 2013;48:628-34. DOI: 10.1016/j.materresbull.2012.11.035.
  • [24] Rao KJ, Paria S. Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and its application for thiamine detection. RSC Adv. 2014:28645-52. DOI: 10.1039/C4RA03883E.
  • [25] Saleem H, Zaidi SJ. Recent developments in the application of nanomaterials in agroecosystems. Nanomaterials. 2020;10:2411. DOI: 10.3390/nano10122411.
  • [26] Lellou S, Kadi S, Guemou L, Schott J, Benhebal H. Study of methylene blue adsorption by modified kaolinite by dimethyl sulfoxide. Ecol Chem Eng S. 2020;27:225-39. DOI: 10.2478/eces-2020-0015.
  • [27] Liu M, Huang R, Che M, Su R, Qi W, He Z. Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chem Eng J. 2018;352:716-21. DOI: 10.1016/j.cej.2018.07.070.
  • [28] Herrera-Becerra R, Rius JL, Zorrilla C. Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A. 2010;100:453-9. DOI: 10.1007/s00339-010-5903-x.
  • [29] Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, et al. Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials. 2020;10:1551. DOI: 10.3390/nano10081551.
  • [30] León ER, Rodríguez EL, Beas CR, Plascencia-Villa G, Palomares RAI. Study of methylene blue degradation by gold nanoparticles synthesized within natural zeolites. J Nanomaterials. 2016;2016:10. DOI: 10.1155/2016/9541683.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38ac830d-2ba0-4208-890d-fb931e25aa04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.