PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheological properties of MR fluids recommended for use in shock absorbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper summarises the results of laboratory testing of rheological behaviour of (magnetorheological) MR fluids designed for use in shock absorber and vibration dampers. The experiments used a rotational rheometer with an extra chamber inside which a uni-form magnetic field can be generated. Underlying the description of rheological properties of fluids is the Herschel-Bulkley’s model of vis-cous-plastic substances. The aim of the experiment was to determine the shear stress, yield stress, the yield factor and the power-law exponent depending on the magnetic flux density, followed by the comparative study of rheological parameters of investigated fluids.
Rocznik
Strony
107--110
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Cheng H., Wang J., Zhang Q., Werely N. (2009), Preparation of composite magnetic particles and aqueous magnetorheological fluids, Smart Materials and Structures, 18, 8, 1-4.
  • 2. Du C., Chen W., Wan F. (2010), Influence of HLB parameters of surfactants on properties of magnetorheological fluid, Advanced Materials Research, 97-101, 843-847.
  • 3. Gołdasz J. (2012), Magnetorheological Shock Absorbers: Automotive Context, Wydawnictwo Politechniki Krakowskiej.
  • 4. Gołdasz J., Sapiński B. (2011), Modeling of Magnetorheological Mounts in Various Operation Modes, Acta Mechanica and Automati- ca, Vol. 5, No. 4, 29-39.
  • 5. Gorodkin S., James R., Kordonski W. (2009), Magnetic properties of carbonyl iron particles in magnetorheological fluids, Journal of Physics: Conference Series, 149(1), 1-4.
  • 6. Jonsdottir F., Gudmundsson K. H., Dijkman T. B., Thorsteinsson F., Gutfleisch O. (2010), Rheology of perfluorinated polyether-based MR fluids with nanoparticles, Journal of Intelligent Material Systems and Structures, 21, 11, 1051-1060.
  • 7. Olabi A., Grunwald A. (2007), Design and application of magneto- rheological fluid, Materials and Design, 28(10), 2658-2664.
  • 8. Phule P (2001), Magnetorheological (MR) fluids: Principles and applications, Smart Materials Bulletin, 2001(2), 7-10.
  • 9. Sapiński B. (2006), Magnetorheological dampers in vibration control, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
  • 10. Soskey P. R,. Winter H. H. (1984), Large step shear strain experiments with parallel disk rotational rheometers, Journal of Rheology, 28, 625–645.
  • 11. Wang H., Zhang B. J., Liu X. Z., Luo D. Z., Zhong S. B. (2011), Compression resistance of magnetorheological fluid, Advanced Materials Research, 143-144, 624–628.
  • 12. Zhu X., Jing X., Li Ch. (2012), Magnetorheological fluid dampers: A review on structure design and analysis, Journal of Intelligent Material System and Structures, 23(8), 839-873.
  • 13. Anton Paar, http://www.anton-paar.com/
  • 14. BASF The Chemical Company, http://www.basonetic.com/
  • 15. LORD Corporation, http://www.lord.com/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a596e8-9cf7-4f25-80e7-9b8305e43c6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.