PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atmospheric in situ gamma-ray spectrometry for precipitation investigation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The underwater gamma-ray spectrometer GeoMAREA was utilized for in situ continuous monitoring of radon progenies in the atmosphere near the city of Anavyssos, Attica, Greece, during the period from 1 November 2017 until 1 April 2018. The acquired spectra before and during rainfalls were used to derive rainwater’s spectra revealing that the major contributors to the observed photo-peaks are the progenies of 222Rn (214Pb, 214Bi). The total counting rate of the spectra and the counting rate of the net areas of 352 keV and 609 keV photo-peaks (214Pb and 214Bi, respectively) proved to be effective parameters for rainfall identification and investigation. Statistical analysis did not reveal a significant association between radon progenies and temperature, pressure, humidity and dew point during rainfalls or dry meteorological conditions. However, preferable wind directions for rainwater rich in radon progenies revealed the impact of the atmospheric masses trajectories before a precipitation event. According to HYSPLIT modelling of selected rainfall events, air masses that pass over terrestrial areas at low altitudes (< 1500 m above ground level) 48 h before the event result in rainwater enriched in radon progenies. On contrary, air masses that pass before an event over terrestrial areas at higher altitudes (> 3000 m above ground level) result in rainwater of low radon progenies concentration. Overall, the method was considered promising for continuous in situ measurements of radon progenies in the atmosphere and may extend the use of radon as a tracer for studies related to climate investigation.
Czasopismo
Rocznik
Strony
2517--2533
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos, Attika, Greece
  • Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos, Attika, Greece
  • Department of Physics, National Technical University of Athens, 15780 Zografou, Greece
  • Department of Physics, National Technical University of Athens, 15780 Zografou, Greece
  • Institute of Oceanography, Hellenic Centre for Marine Research, 19013 Anavyssos, Attika, Greece
Bibliografia
  • 1. Alexakis S, Tsabaris C (2021) Design of an interactive cellular system for the remote operation of ocean sensors: a pilot study integrating radioactivity sensors. J Mar Sci Eng. https://doi.org/10.3390/jmse9080910
  • 2. Baldoncini M, Albéri M, Bottardi C, Minty B, Raptis KGC, Strati V, Mantovani F (2017) Exploring atmospheric radon with airborne gamma-ray spectroscopy. Atmos Environ 170:259–268. https://doi.org/10.1016/j.atmosenv.2017.09.048
  • 3. Casanovas R, Morant JJ, Salvadó M (2013) Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors. Appl Radiat Isot 80:49–55. https://doi.org/10.1016/j.apradiso.2013.06.003
  • 4. Cortès G, Sempau J, Ortega X (2001) Automated measurement of radon daughters Bi-214 and Pb-214 in rainwater. Nukleonika 46:161–164
  • 5. Fujinami N (1997), Observational study of the scavenging of radon daughters by precipitation from the atmosphere, In: Environment international. pp. 181–185. https://doi.org/10.1016/S0160-4120(96)00106-7
  • 6. Gómez Escobar V, Vera Tomé F, Martín Sánchez A (1996) Gross alpha-and beta-activities in rainwater and airborne particulate samples. Influence of rainfall and radon. J Environ Radioact 31:273–285. https://doi.org/10.1016/0265-931X(95)00053-D
  • 7. Greenfield MB, Domondon AT, Okamoto N, Watanabe I (2002) Variation in γ-ray count rates as a monitor of precipitation rates, radon concentrations, and tectonic activity. J Appl Phys 91:1628–1633. https://doi.org/10.1063/1.1426248
  • 8. Greenfield MB, Domondon AT, Tsuchiya S, Tomiyama M (2003) Monitoring precipitation rates using γ rays from adsorbed radon progeny as tracers. J Appl Phys 93:5733–5741. https://doi.org/10.1063/1.1563313
  • 9. Greenfield MB, Ito N, Iwata A, Kubo K, Ishigaki M, Komura K (2008) Determination of rain age via γ rays from accreted radon progeny. J Appl Phys. https://doi.org/10.1063/12990773
  • 10. Horng MC, Jiang SH (2003) A rainout model for the study of the additional exposure rate due to rainfall. Radiat Meas 37:603–608. https://doi.org/10.1016/S1350-4487(03)00067-2
  • 11. Jasaitis D, Daunaravičienė A, Girgždys A (2013) Variation of activity concentration of radon decay products in the curonian spit. Ekologija 58:405–412. https://doi.org/10.6001/ekologija.v58i4.2609
  • 12. Jun M, Ohkura T, Hirao S, Nono Y, Yamazawa H, Shin Kim Y, Guo Q, Mukai H, Tohjima Y, Iida T (2008) Continuous observation of atmospheric 222rn concentrations for analytic basis of atmospheric transport in east asia. J Nucl Sci Technol 45:173–179. https://doi.org/10.1080/00223131.2008.10876002
  • 13. Kalfas CA, Axiotis M, Tsabaris C (2016) SPECTRW: a software package for nuclear and atomic spectroscopy. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 830:265–274. https://doi.org/10.1016/j.nima.2016.05.098
  • 14. Livesay RJ, Blessinger CS, Guzzardo TF, Hausladen PA (2014) Rain-induced increase in background radiation detected by Radiation Portal Monitors. J Environ Radioact 137:137–141. https://doi.org/10.1016/j.jenvrad.2014.07.010
  • 15. Mercier JF, Tracy BL, d’Amours R, Chagnon F, Hoffman I, Korpach EP, Johnson S, Ungar RK (2009) Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass. J Environ Radioact 100:527–533. https://doi.org/10.1016/j.jenvrad.2009.03.002
  • 16. Minato S (1980) Analysis of time variations in natural background gamma radiation flux density. J Nucl Sci Technol 17:461–469. https://doi.org/10.1080/18811248.1980.9732610
  • 17. Minato S (2007) A simple rainout model for radon daughters. J Nucl Radiochem Sci 8:N1–N3. https://doi.org/10.14494/jnrs2000.8.n1
  • 18. Moriizumi J, Kondo D, Kojima Y, Liu H, Hirao S, Yamazawa H (2015) 214 Bi/214 Pb radioactivity ratio in rain water for residence time estimation of cloud droplets. Radiat Prot Dosim 167:55–58
  • 19. Paatero J (2000) Wet deposition of radon-222 progeny in northern Finland measured with an automatic precipitation gamma analyser. Radiat Prot Dosim 87:273–280. https://doi.org/10.1093/oxfordjournals.rpd.a033008
  • 20. Paatero J, Hatakka J (1999) Wet deposition efficiency of short-lived radon-222 progeny in central Finland. Boreal Environ Res 4:285–293
  • 21. Patiris DL, Pensieri S, Tsabaris C, Bozzano R, Androulakaki EG, Anagnostou MN, Alexakis S (2021) Rainfall investigation by means of marine in situ gamma-ray spectrometry in Ligurian Sea, mediterranean sea, Italy. J Mar Sci Eng. https://doi.org/10.3390/jmse9080903
  • 22. Pensieri S, Patiris D, Alexakis S, Anagnostou MN, Prospathopoulos A, Tsabaris C, Bozzano R (2018) Integration of underwater radioactivity and acoustic sensors into an open sea near real-time multi-parametric observation system. Sensors (switzerland). https://doi.org/10.3390/s18082737
  • 23. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display sYstem: READY. Environ Model Softw 95:210–228. https://doi.org/10.1016/j.envsoft.2017.06.025
  • 24. Seftelis I, Nicolaou G, Trassanidis S, Tsagas FN (2007) Diurnal variation of radon progeny. J Environ Radioact 97:116–123. https://doi.org/10.1016/j.jenvrad.2007.03.007
  • 25. Seftelis I, Nicolaou G, Tsagas NF (2008) A mathematical description of the diurnal variation of radon progeny. Appl Radiat Isot 66:75–79. https://doi.org/10.1016/j.apradiso.2007.07.006
  • 26. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  • 27. Stoulos S, Ioannidou A (2020) Radon and its progenies variation in the urban polluted atmosphere of the Mediterranean city of Thessaloniki. Greece Environ Sci Pollut Res 27:1160–1166. https://doi.org/10.1007/s11356-019-07051-4
  • 28. Tsabaris C, Ballas D (2005) On line gamma-ray spectrometry at open sea. Appl Radiat Isot 62:83–89. https://doi.org/10.1016/j.apradiso.2004.06.007
  • 29. Tsabaris C, Bagatelas C, Dakladas T, Papadopoulos CT, Vlastou R, Chronis GT (2008) An autonomous in situ detection system for radioactivity measurements in the marine environment. Appl Radiat Isot 66:1419–1426. https://doi.org/10.1016/j.apradiso.2008.02.064
  • 30. Tsabaris C, Androulakaki EG, Prospathopoulos A, Alexakis S, Eleftheriou G, Patiris DL, Pappa FK, Sarantakos K, Kokkoris M, Vlastou R (2019) Development and optimization of an underwater in-situ cerium bromide spectrometer for radioactivity measurements in the aquatic environment. J Environ Radioact 204:12–20. https://doi.org/10.1016/j.jenvrad.2019.03.021
  • 31. Tsujimoto T, Yamasaki K, Ogawa Y, Iida T, Takeyasu M (2006) Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector. J Environ Radioact 88:74–89. https://doi.org/10.1016/j.jenvrad.2006.01.001
  • 32. Williams AG, Zahorowski W, Chambers S, Griffiths A, Hacker JM, Element A, Werczynski S (2011) The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J Atmos Sci 68:155–174. https://doi.org/10.1175/2010JAS3576.1
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a4e038-6ddd-4c9a-afe3-cf1bf3bd0be0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.