PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser modified functional carbon-based coatings on titanium substrate for cardiac tissue integration and blood clotting inhibition

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work focused on developing functional coatings on titanium substrates that would facilitate the integration with the cardiac tissue and with a specific form of connective tissue like blood. Surface modifications consisted in the laser evaporation of part of the biocompatible layer, thus creating a suitable environment for a particular tissue. For the myocardium integration, the metal surface was refined by biohemocompatible coatings. Such surfaces were the starting point for further modifications in the form of channels. The channeled surfaces enabled a controlled cell migration and proliferation. The interaction of endothelial cells with the material was highly dependent on the surface characteristics such as: topography, microstructure or mechanical properties. The controlled cellular response was achieved by modifying the surface to obtain a network of wells or channels of different dimensions via the laser interference lithography. This technique determined a high resolution shape, size and distribution patterns. As a result, it was possible to control cells in the scale corresponding to biological processes. The surface periodization ensured the optimal flow of oxygen and nutrients within the biomaterial, which was of a key importance for the cell adhesion and proliferation. The work attempted at producing the surface networks mimicking natural blood vessels. To stimulate the formation of new blood vessel the finishing resorbable synthetic coatings were applied on the surface to act as a drug carrier. Therefore, the initial trial to introduce factors stimulating the blood vessels growth was performed.
Rocznik
Strony
22--31
Opis fizyczny
Bibliogr. 27 poz., rys., tab., zdj.
Twórcy
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta Str. 25, 30-059 Krakow, Poland
  • Military University of Technology, Institute of Optoelectronics, Gen. S. Kaliskiego Str. 2, 00-908 Warsaw, Poland
  • Department of Internal Medicine, Jagiellonian University Medical College, Skawinska Str. 8, 31-066 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta Str. 25, 30-059 Krakow, Poland
  • Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf, Austria
Bibliografia
  • [1] Novosel E.C., Kleinhans C., Kluger P.J.: Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews 63 (2011) 300–311.
  • [2] Weng Y., Chen J., Tu Q., Li Q., Maitz M.F., Huang N.: Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface Focus 2 (2012) 356–365.
  • [3] Druecke D., Langer S., Lamme E., Pieper J., Ugarkovic M., Steinau H.U., Homann H.H.: Neovascularization of poly(ether ester) blockcopolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J. Biomed. Mater. Res. A 68 (2004) 10–18.
  • [4] McGuigan A.P., Sefton M.V.: The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28 (2007) 2547–2571.
  • [5] Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V.: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnology Advances 29 (2011) 739–767.
  • [6] Schernthaner M., Reisinger B., Wolinski H., Kohlwein S.D., Trantina-Yates A., Fahrner M., Romanin Ch., Itani H., Stifter D., Leitinger G., Groschner K., Heitz J.: Nanopatterned polymer substrates promote endothelial proliferation by initiation of b-catenin transcriptional signaling. Acta Biomaterialia 8 (2012) 2953–2962.
  • [7] de Mel A., Jell G., Stevens M.M., Seifalian A.M.: Biofunctionalization of biomaterials for accelerated in-situ endothelialization: a review. Biomacromolecules 9 (2008) 2969–2979.
  • [8] Biggs M.J.P., Richards R.G., Gadegaard N., Wilkinson C.D.W., Oreffo R.O.C., Dalby M.J.: The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30 (2009) 5094–5103.
  • [9] Guvendiren M., Burdick J.A.: The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31 (2010) 6511–6518
  • [10] Ohl A., Schröder K.: Plasma-induced chemical micropatterning for cell culturing applications: a brief review. Surf Coat Technol 116–119 (1999) 820–830.
  • [11] Benson R.S.: Use of radiation in biomaterials science. Nucl Instrum Methods Phys Res B 191 (2002) 752–757.
  • [12] Gumpenberger T., Heitz J., Bäuerle D., Kahr H., Graz I., Romanin C., Svorcik V., Leisch F.: Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials 24 (2003) 5139–5144.
  • [13] Kearns V.R., McMurray R.J., Dalby M.J.: Biomaterial surface topography to control cellular response: technologies, cell behaviour and biomedical applications. In: Williams R, editor. Surface modification of biomaterials. Oxford: Woodhead Publishing; 2011. p. 169–201.
  • [14] Kruss S., Wolfram T., Martin R., Neubauer S., Kessler H., Spatz S.P.: Stimulation of cell adhesion at nanostructured Teflon interfaces. Adv Mater 22 (2010) 5499–5506.
  • [15] Martínez E., Lagunas A., Mills C.A., Rodríguez-Seguí S., Estévez M., Oberhansl S., Comelles J., Samitier J.: Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedine 4 (2009) 65–82.
  • [16] Marczak J.: Micromachining and pattering im micro/nano scale on macroscopic areas. Archives of Metallurgy and Materials 6 (2015) 2221-2234.
  • [17] Hedberg-Dirk E.L., Martinez U.A.: Large-Scale Protein Arrays Generated with Interferometric Lithography for Spatial Control of Cell-Material Interactions. Journal of Nanomaterials (2010) 1-9.
  • [18] Tang L., Eaton J.W.: Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Mol Med 5(6) (1999) 351-358.
  • [19] Marczak J.: Micromachining and pattering im micro/nano scale on macroscopic areas. Archives of Metallurgy and Materials 6 (2015) 2221-2234.
  • [20] Sanak M., Jakieła B., Wegrzyn W.: Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests. Bulletin of the Polish Academy of Science Technical Science, 58(2) (2010) 317- 322.
  • [21] Yi P., Peng L., Huang J.: Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process. Materials Science and Engineering C 59 (2016) 669–676.
  • [22] Felgueiras H.P., Evans M.D., Migonney V.: Contribution of fibronectin and vitronectin to the adhesion and morphology of MC3T3-E1 osteoblastic cells to poly(NaSS) grafted Ti6Al4V. Acta Biomaterialia 28 (2015) 225–233.
  • [23] Goodman S.L., Cooper S.L., Albrecht R.M.: The effects of substrate-adsorbed albumin on platelet spreading. Journal of Biomaterials Science, Polymer Edition 2 (1991) 147–159.
  • [24] Brash J.L., Macromol. Chem. Suppl. 9 (1985) 69.
  • [25] Lambrecht L.K., Young B.R., Stafford R.E., Park K., Albrecht R.M., Mosher D.F., Cooper S.L.: The influence of preabsorbed canine von Willebrad factor, fibronectin, and fibrinogenon ex vivo artificial surface-induced thrombosis. Thrombosis Res. 41 (1986) 99-117.
  • [26] Rabe M., Verdes D., Seeger S.: Understanding protein adsorption phenomena at solid surfaces. Advances in Colloid and Interface Science 162 (2011) 87-106.
  • [27] Vogler E.A.: Protein adsorption in three dimensions. Biomaterials 33 (2012) 1201-1237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a39dd5-2b21-41c0-a696-429b741262ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.