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THE ACHROMATIC NUMBER OF K6�K7 IS 18
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Abstract. A vertex colouring f : V (G)→ C of a graph G is complete if for any two distinct
colours c1, c2 ∈ C there is an edge {v1, v2} ∈ E(G) such that f(vi) = ci, i = 1, 2. The
achromatic number of G is the maximum number achr(G) of colours in a proper complete
vertex colouring of G. In the paper it is proved that achr(K6�K7) = 18. This result finalises
the determination of achr(K6�Kq).
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1. INTRODUCTION

Consider a finite simple graph G and a finite colour set C. A vertex colouring
f : V (G) → C is complete if for any two distinct colours c1, c2 ∈ C one can find
an edge {v1, v2} ∈ E(G) ({v1, v2} is usually shortened to v1v2) such that f(vi) = ci,
i = 1, 2. The achromatic number of G, in symbols achr(G), is the maximum cardinality
of C admitting a proper complete vertex colouring of G. The invariant was introduced
by Harary, Hedetniemi, and Prins in [4], where the following interpolation theorem
was proved.

Theorem 1.1. If G is a graph, and χ(G) ≤ k ≤ achr(G) for an integer k, then there
exists a k-element colour set C and a proper complete vertex colouring f : V (G)→ C.

Let G�H denote the Cartesian product of graphs G and H (the nota-
tion follows the monograph [10] by Imrich and Klavžar). So, V (Kp�Kq) =
V (Kp) × V (Kq), and E(Kp�Kq) consists of all edges (x, y1)(x, y2) with
y1 6= y2 and all edges (x1, y)(x2, y) with x1 6= x2. The problem of determining
achr(Kp�Kq) is motivated by the fact that, according to Chiang and Fu [2],

achr(G�H) ≥ achr(Kp�Kq)
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for arbitrary graphs G, H with achr(G) = p and achr(H) = q. The graph Kq �Kp is
isomorphic to the graph Kp�Kq, hence

achr(Kq �Kp) = achr(Kp�Kq),

and so it is natural to suppose p ≤ q. The case p ∈ {2, 3, 4} was solved by Horňák and
Puntigán in [9], and that of p = 5 by Horňák and Pčola in [7, 8].
Proposition 1.2 ([1]). achr(K6�K6) = 18.

More generally, in [3] Chiang and Fu proved that if r is an odd projective plane
order, then

achr(K(r2+r)/2�K(r2+r)/2) = (r3 + r2)/2.
The aim of the present paper is to finalise the determination of achr(K6�Kq) (for

q ≥ 8 see Horňák [5, 6]) by proving
Theorem 1.3. achr(K6�K7) = 18.

To formulate the complete result describing the achromatic number of K6�Kq

we use the sets Ja, a ∈ [3, 6], where

J3 = [2, 3] ∪ {q ∈ [41,∞) : q ≡ 1(mod 2)},
J4 = {1, 4, 7} ∪ [16, 40] ∪ {q ∈ [42,∞) : q ≡ 0(mod 2)},
J5 = {5, 8},
J6 = {6} ∪ [9, 15].

Note that J3 ∪ J4 ∪ J5 ∪ J6 = [1,∞).
Theorem 1.4. If a ∈ [3, 6] and q ∈ Ja, then achr(K6�Kq) = 2q + a.

2. NOTATION AND BASIC FACTS

For k, l ∈ Z we denote integer intervals by

[k, l] = {z ∈ Z : k ≤ z ≤ l}, [k,∞) = {z ∈ Z : k ≤ z}.
Further, for a set A and m ∈ [0,∞) let

(
A
m

)
be the set of m-element subsets of A.

Under the assumption that V (Kr) = [1, r] for r ∈ [1,∞), a vertex colour-
ing f : V (Kp�Kq) → C can be conveniently described using the p × q matrix
M = M(f), in which the entry in the ith row and the jth column is
(M)i,j = f(i, j).

If f is proper, then each line (row or column) of M consists of pairwise distinct
entries.

If f is complete, then each pair {γ1, γ2} ∈
(
C
2
)
(of colours in C) is good in M ,

which means that at least one of the next two conditions is fulfilled:
(i) the pair {γ1, γ2} is row-based (in M), i.e., there are i ∈ [1, p] and j1, j2 ∈ [1, q]

such that {γ1, γ2} = {(M)i,j1 , (M)i,j2},
(ii) the pair {γ1, γ2} is column-based (in M), i.e., there are i1, i2 ∈ [1, p] and j ∈ [1, q]

such that {γ1, γ2} = {(M)i1,j , (M)i2,j}.
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The following is a natural necessary condition for the completeness of f : Given
γ ∈ C and C ′ ⊆ C \ {γ}, the number g(γ,C ′) of pairs {γ, γ′} with γ′ ∈ C ′ \ {γ} that
are good in M , is at least |C ′| − 1. Note that

g(γ,C ′) ≤
∑

(i,j):(M)i,j=γ

g(i, j, C ′),

where g(i, j, C ′) is the number of those pairs {γ, γ′}, γ′ ∈ C ′ \ {γ}, that are good in
M due to the copy (M)i,j of the colour γ.

Let M(p, q, C) be the set of p × q matrices M with entries from C such that
entries of any line of M are pairwise distinct, and all pairs in

(
C
2
)
are good in M .

Thus if f : [1, p]× [1, q]→ C is a proper complete vertex colouring of Kp�Kq, then
M(f) ∈M(p, q, C).

Conversely, if M ∈ M(p, q, C), it is immediate to see that the mapping
fM : [1, p]× [1, q]→ C determined by fM (i, j) = (M)i,j is a proper complete vertex
colouring of Kp�Kq.

So, we have just proved
Proposition 2.1. If p, q ∈ [1,∞) and C is a finite set, then the following statements
are equivalent:
(1) there is a proper complete vertex colouring of Kp�Kq using as colours elements

of C,
(2) M(p, q, C) 6= ∅.

The following straightforward proposition comes from [5].
Proposition 2.2. If p, q ∈ [1,∞), C,D are finite sets, M ∈ M(p, q, C), mappings
ρ : [1, p] → [1, p], σ : [1, q] → [1, q], π : C → D are bijections, and Mρ,σ, Mπ are
p × q matrices defined by (Mρ,σ)i,j = (M)ρ(i),σ(j) and (Mπ)i,j = π((M)i,j), then
Mρ,σ ∈M(p, q, C) and Mπ ∈M(p, q,D).

Let M ∈M(p, q, C) and let γ ∈ C. For a colour γ ∈ C and the colouring fM from
the proof of Proposition 2.1 denote Vγ = f−1

M (γ) ⊆ [1, p]× [1, q], and let N(Vγ) be the
neighbourhood of Vγ (the union of neighbourhoods of vertices in Vγ). The excess of
γ is defined to be the maximum number exc(γ) of vertices in a set S ⊆ N(Vγ) such
that the partial vertex colouring of K6�K7, obtained by removing colours of S, is
still complete concerning the colour class γ.

The frequency of the colour γ is the number of entries of M equal to γ.
An l-colour (l+colour) is a colour of frequency l (at least l), and Cl (Cl+) is the
set of l-colours (l+colours). Further, for k ∈ {l, l+} let ck = |Ck|,

R(i) = {(M)i,j : j ∈ [1, q]}, Rk(i) = Ck ∩ R(i), rk(i) = |Rk(i)|, i ∈ [1, p],
C(j) = {(M)i,j : i ∈ [1, p]}, Ck(j) = Ck ∩ C(j), ck(j) = |Ck(j), j ∈ [1, q].

Finally, denote

R2(i1, i2) = C2 ∩ R(i1) ∩ R(i2), r2(i1, i2) = |R2(i1, i2)|, i1, i2 ∈ [1, p], i1 6= i2,

C2(j1, j2) = C2 ∩ C(j1) ∩ C(j2), c2(j1, j2) = |C2(j1, j2)|, j1, j2 ∈ [1, q], j1 6= j2.
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Considering a nonempty set S ⊆ [1, p]× [1, q] we say that a colour γ ∈ C occupies
a position in S (appears in S, has a copy in S or simply is in S) if there is (i, j) ∈ S
such that (M)i,j = γ.

3. PROPERTIES OF A COUNTEREXAMPLE TO THEOREM 1.3

We prove Theorem 1.3 by the way of contradiction. It is well known that

achr(G) ≥ achr(H)

if H is an induced subgraph of a graph G. So, by Proposition 1.2,

achr(K6�K7) ≥ achr(K6�K6) = 18.

Provided that Theorem 1.3 is false, by Theorem 1.1 and Proposition 2.1 there is
a set C with |C| = 19 and a matrix M ∈M(6, 7, C); henceforth the whole notation
corresponds to this (hypothetical) matrix M .
Claim 3.1. If γ ∈ Cl, then exc(γ) = −l2 + 12l − 18.
Proof. The vertex colouring fM of K6�K7 is proper, hence

|N(Vγ)| = 7l + l(6− l)− l = l(12− l).

Further, fM is complete, and so each colour of C \ {γ} appears on a vertex belonging
to N(Vγ). Therefore,

exc(γ) = l(12− l)− (19− 1) = −l2 + 12l − 18.

Claim 3.2. The following statements are true:
1. c1 = 0,
2. if l ∈ [7,∞), then cl = 0,
3. c2 ∈ [15, 18],
4. c3+ ∈ [1, 4],
5. Σ =

∑6
i=3 ici ∈ [6, 12],

6. c4+ ≤ c2 − 15,
7. if c4+ = 0, then c3+ = c3 = 4,
8. if c4+ ≥ 1, then c3+ ≤ 3,
9. c3+ + c4+ ≤ 4,
10. if c5+ ≥ 1, then c3+ + c4+ ≤ 3.

Proof. 1. If γ ∈ C1, then, by Claim 3.1, exc(γ) = −7 < 0, a contradiction.
2. If γ ∈ Cl for some l ∈ [7,∞), then by the pigeonhole principle the colouring fM

is not proper, a contradiction.
3. By Claims 3.2.1, 3.2.2 we have

c2 + c3+ =
6∑

i=2
ci = |C| = 19
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and
6∑

i=2
ici = |V (K6�K7)| = 42,

hence

2c2 + 6(19− c2) = 2c2 + 6c3+ ≥
6∑

i=2
ici ≥ 2c2 + 3c3+ = 2c2 + 3(19− c2),

which yields
114− 4c2 ≥ 42 ≥ 57− c2 and 15 ≤ c2 ≤ 18.

4. A consequence of Claim 3.2.3.
5. The assertion of Claim 3.2.3 leads to

6∑

i=3
ici =

6∑

i=2
ici − 2c2 = 42− 2c2 ∈ [6, 12].

6. We have

3 · 19− c2 + c4+ = 3(c2 + c3 + c4+)− c2 + c4+ ≤
6∑

i=2
ici = 42

and
c4+ ≤ c2 − 15.

7. If c4+ = 0, then

c2 + c3 = 19, 2c2 + 3c3 = 42 and c3+ = c3 = 42− 2 · 19 = 4.

8. The assumption c4+ ≥ 1 and c3+ = 4 would mean

Σ ≥ 3 · 3 + 4 = 13 > 12,

which contradicts Claim 3.2.5.
9. If c4+ = 0, then c3+ + c4+ = c3+ ≤ 4. With c4+ = 1 we have, by Claim 3.2.6,

1 =c4+ ≤ c2 − 15, c2 ≥ 16, c3 = 19− c2 − c4+ ≤ 2,
c3+ ≤ 3 and c3+ + c4+ ≤ 4.

Finally, from c4+ ≥ 2 it follows that

2 ≤ c4+ ≤ c2 − 15, c2 ≥ 17,
19 = c2 + c3 + c4+ ≥ 17 + c3 + 2 = 19 + c3 ≥ 19,
c2 = 17, c3 = 0, c4+ = 2 = c3+ and c3+ + c4+ = 4.
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10. We have

2(19− c5+) + 5c5+ = 2(c2 + c3 + c4) + 5(c5 + c6) ≤
6∑

i=2
ici = 42,

3c5+ ≤ 4 and c3 + 2c4 = 42− 2(19− c5 − c6)− 5c5 − 6c6 ≤ 4− 3c5+,

hence c5+ ≥ 1 yields

c5+ = 1, c3 + 2c4 ≤ 1, c4+ = c5+ = 1,
c3+ = c3 + c4+ = c3 + 1 and c3+ + c4+ = c3 + 1 + 1 ≤ 3.

A set D ⊆ C2 is of the type (ma1
1 . . .mak

k , n
b1
1 . . . n

bl
l ) if both (m1, . . . ,mk),

(n1, . . . , nl) are decreasing sequences of integers from the interval [1, |D|], the number
of rows of M containing mi colours from D is ai ≥ 1 for each i ∈ [1, k], the number of
columns of M containing ni colours from D is bi ≥ 1 for each i ∈ [1, l], and

k∑

i=1
miai = 2|D| =

l∑

i=1
nibi.

Forthcoming Claims 3.3, 3.4, 3.6, 3.7, and 3.9 state that certain types of 2- and
3-element subsets of C2 are impossible in a matrix M contradicting Theorem 1.3. The
mentioned claims are proved by contradiction. When proving that M avoids a type T ,
we suppose that there is D ⊆ C2, which is of the type T (without explicitly mentioning
it), and we reach a contradiction with some of the properties following from the fact
that M ∈M(6, 7, C).

Claim 3.3. No set {α, β} ⊆ C2 is of the type (14, 22).

Proof. Since we have at our disposal Proposition 2.2, we may suppose without loss
of generality that (M)1,1 = α = (M)3,2 and (M)2,1 = β = (M)4,2. We use (w) to
express briefly that it is Proposition 2.2, which enables us to simplify our reasoning by
restricting our attention to matrices with a special structure. With A = C(1) ∪ C(2)
we have |A| ≤ 10. If γ ∈ C \ A, then the fact that both pairs {γ, α} and {γ, β} are
good forces γ to occupy a position in Sα = {1, 3} × [3, 7] and in Sβ = {2, 4} × [3, 7] as
well. So,

|C \A| ≤ 10 and |C \A| = |C| − |A| ≥ 9.

By Claim 3.2.4,

|(C \A) ∩ C2| = |C \A| − |(C \A) ∩ C3+| ≥ 9− c3+ ≥ 5,

hence there is δ ∈ (C \ A) ∩ C2. Now, as δ is in both Sα and Sβ , there
is (i, k) ∈ {1, 3} × {2, 4} such that δ ∈ R2(i, k). If (i, k) = (1, 2), then
(w) (M)1,3 = δ = (M)2,4 (see Figure 1).
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α . δ • • • •
β . • δ • • •
. α • • . . .
. β • • . . .
. . . . . . .
. . . . . . .




Fig. 1.

If |C \ A| = 10, then all ten positions in both Sα, Sβ are occupied by colours of
C \A, and all twelve bullet positions in Figure 1 are occupied by colours of (C \A)\{δ},
which means that

exc(δ) ≥ 12− |(C \A) \ {δ}| = 12− (10− 1) = 3

in contradiction to Claim 3.1.
If |C \A| = 9, then C(1)∩C(2) = {α, β}. Let B be the set of four colours occupying

a position in [5, 6]× [1, 2]. Using exc(α) = exc(β) = 2 we see that at most two positions
in [1, 4] × [3, 7] are occupied by a colour of B. Thus, if ε ∈ B is not in [1, 4] × [3, 7]
(and there are at least two possibilities for such ε), then it must be in [5, 6]× [3, 7],
and so ε ∈ C2 (the colouring fM is proper). Then, however, the number of pairs {ζ, ε}
with ζ ∈ (C \ A) ∩ C2 that are good is at most four (ζ must share the column with
the copy of ε appearing in [5, 6]× [3, 7]), while

|(C \A) ∩ C2| ≥ |C \A| − |C3+| ≥ 9− 4 = 5,

a contradiction.
Provided that (i, k) 6= (1, 2), a contradiction can be reached in a similar manner.

Claim 3.4. No set {α, β} ⊆ C2 is of the type (2112, 22).

Proof. Now (w) (M)1,1 = α = (M)2,2 and (M)2,1 = β = (M)3,2. With A = C(1) ∪
C(2)∪R(2) each colour γ ∈ C \A has a copy in {i}× [3, 7], i = 1, 3 ({γ, α} and {γ, β}
are good). From |A| ≤ 15 it follows that

|C \A| ≥ 19− 15 = 4,

and then C \A ⊆ C3+: indeed, if δ ∈ (C \A) ∩ C2, then

exc(δ) ≥ |(C \A) \ {δ}| ≥ 3,

a contradiction. Thus C2 ⊆ A, c2 ≤ 15, hence, by Claims 3.2.3, 3.2.4, c2 = 15,
c3 = c3+ = 4, C \A = C3+ = C3, each colour of C2 \ {α, β} has exactly one copy in
([1, 6]× [1, 2]) ∪ ({2} × [3, 7]), and (w) ε = (M)1,2, ζ = (M)3,1 are (distinct) 2-colours.

First note that ε, ζ /∈ R2(1, 3), for otherwise

max(exc(ε), exc(ζ)) ≥ c3 = 4.
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So, the second copies of ε, ζ are in [4, 6] × [3, 7], and the pair {ε, ζ} is good in the
corresponding 3× 5 submatrix of M .

If the pair {ε, ζ} is column-based, (w) ε = (M)4,3 and ζ = (M)5,3, then, with
a (2-) colour η appearing in {2} × [4, 7], both pairs {η, ε} and {η, ζ} are good only if
η occupies a position in {1, 3, 6} × {3}, a contradiction.

If the pair {ε, ζ} is row-based, then (w) ε = (M)4,3 and ζ = (M)4,4; consider
six positions in [5, 6] × [5, 7]. Since r3(1) = r3(3) = 4 = c3, at most four of those
positions are occupied by 3-colours and at least two of them by 2-colours. Let B be
the set of 2-colours having a copy in ([5, 6] × [5, 7]) ∪ ({2} × [5, 7]). If ϑ ∈ B, then,
having in mind that both pairs {ϑ, ε} and {ϑ, ζ} are good, ϑ must have a copy in
{(1, 4), (3, 3), (4, 1), (4, 2)}; this contradicts the inequality |B| ≥ 5.

Claim 3.5. If j, l ∈ [1, 7], j 6= l, then c2(j, l) ≤ 2.

Proof. The assumption c2(j, l) ≥ 3 would contradict Claim 3.3 or Claim 3.4.

Claim 3.6. No set {α, β} ⊆ C2 is of the type (22, 14).

Proof. Here (w) (M)1,1 = α = (M)2,3 and (M)1,2 = β = (M)2,4. With
A = R(1) ∪ R(2) we have |A| ≤ 12, each colour of C \ A is in both sets
Sα = [3, 6] × {1, 3}, Sβ = [3, 6] × {2, 4}, and 7 ≤ |C \ A| ≤ 8. As
|(C \A) ∩ C2| ≥ 3, there is (j, l) ∈ {1, 3} × {2, 4} such that γ ∈ (C \A) ∩ C2(j, l).

If (j, l) = (1, 2), then (w) (M)3,1 = γ = (M)4,2 (see Figure 2).



α β . . . . .
. . α β . . .
γ • • • . . .
• γ • • . . .
• • . . . . .
• • . . . . .




Fig. 2.

If |C \A| = 8, then all eight positions in both sets Sα, Sβ are occupied by colours
of C \A. Further, all ten bullet positions in Figure 2, which are positions of vertices
in (N(Vα) ∪ N(Vβ)) ∩ N(Vγ), are occupied by colours of (C \ A) \ {γ}), and so
exc(γ) ≥ 10− (8− 1) = 3, a contradiction.

Suppose that |C \ A| = 7 (and A| = 12). For m ∈ {2, 3+, 4+} and n ∈ [0, 2] let
Cnm be the set of colours in Cm having n copies in [5, 6] × [5, 7], and let cnm = |Cnm|.
If δ ∈ C1

2 ∪ C2
3 , then, since the pairs {δ, α}, {δ, β} and {δ, γ} are good, δ must appear

in {2} × [1, 2], and so c1
2 + c2

3 ≤ 2; further, c2
2 = 0. Using Claim 3.2.9 we obtain

6 = c1
2 + c1

3 + c1
4+ + 2c2

3 + 2c2
4+ ≤ c1

2 + c2
3 +

2∑

n=0
(cn3 + cn4+) + c2

4+

≤ c1
2 + c2

3 + c3+ + c4+ ≤ 2 + 4 = 6,
(3.1)
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which implies

c0
3 = c0

4+ = c1
4+ = 0, (3.2)

c4+ = c2
4+, (3.3)

c1
2 + c2

3 = 2, (3.4)

c3+ + c4+ = 4, and so, by Claim 3.2.10, c5+ = 0.
For δ ∈ {α, β} choose a set Sδ′ ⊆ Sδ with |Sδ′ | = 7 occupied by seven distinct

colours of C \A, and let

P = ([3, 6]× [1, 4]) \ (Sα′ ∪ Sβ′);

then |P | = 2. Since
|N(Vγ) ∩ ([3, 6]× [1, 4])| = 10,

we have
2 = exc(γ) ≥ 10− (|P |+ |(C \A) \ {γ}| = 4− |P | = 2,

hence both positions in P are necessarily occupied by a colour of A, and all sets
Sα′ , Sβ′ , P are unique. We express this property of γ by saying that γ is A-exact.
Besides that, the two positions in P are occupied by two distinct colours of A, say λ
and µ; indeed, otherwise the colour of A, which occupies both positions in P , by (3.3),
would be a 5+colour, a contradiction. Let P = {(iλ, jλ), (iµ, jµ)}, where λ = (M)iλ,jλ
and µ = (M)iµ,jµ . The excess of both α, β is 2, therefore (jλ, jµ) ∈ {1, 3} × {2, 4}
(a colour occupying a position in P contributes to the excess of either α or β, and α, β
are contributing to the excess of each other).

The above reasoning concerning γ can be repeated to prove that any colour
in (C \A) ∩ C2 is A-exact.

Suppose that ε ∈ (C \ A) ∩ C2; then ε is A-exact and ε ∈ C2(j′, l′), where
(j′, l′) ∈ {1, 3} × {2, 4}. Let {lλ, lµ} = [1, 4] \ {jλ, jµ}.

Assume first that iλ = iµ. By Claim 3.4,

|(C \A) ∩ C2(jλ, jµ)| ≤ 2.

If (j′, l′) 6= (jλ, jµ), then either ε = (M)iλ,lλ or ε = (M)iλ,lµ .
The second possibility is iλ 6= iµ. By Claim 3.4,

|(C \A) ∩ C2(lλ, lµ)| ≤ 2.

On the other hand, if (j′, l′) 6= (lλ, lµ), then either ε = (M)iλ,jµ or ε = (M)iµ,jλ .
In both cases

|(C \A) ∩ C2| ≤ 2 + 2 = 4
and

|(C \A) ∩ C3+| ≥ 7− 4 = 3. (3.5)
From (3.1) and (3.3) we obtain

(C \A) ∩ C3+ ⊆ C1
3 ∪ C2

4+,
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hence c1
3 + c2

4+ ≥ 3. Let us show the following:

No 3+colour occupies a position in [3, 4]× [5, 7], and c1
2 ≥ 1. (3.6)

Because of (3.2) and (3.3) we know that colours of (C \ A) ∩ C3+ appear only
in ([3, 6]× [1, 4]) ∪ ([5, 6]× [5, 7]). If c4+ ≥ 1, then, by Claim 3.2.8,

3 ≥ c3+ ≥ c1
3 + c2

4+ ≥ 3, c3+ = c1
3 + c2

4+ = 3,
C3+ = C1

3 ∪ C2
4+ = (C \A) ∩ C3+,

c2
3 = 0, c1

2 = 2 (see (3.4)), and so (3.6) is true.
If c4+ = 0, then from (3.1), (3.4) and Claim 3.2.4 it follows that

c1
3 + c2

3 = 4 = c3+, C3+ = C1
3 ∪ C2

3 = ((C \A) ∩ C3+) ∪ C2
3

and, by (3.5), c1
3 ≥ 3; since a colour of C2

3 is only in ({2} × [1, 2]) ∪ ([5, 6] × [5, 7]),
c2

3 ≤ 1 and c1
2 ≥ 1, (3.6) is true again.

Now, by (3.6), six positions in [3, 4]× [5, 7] are occupied by six distinct 2-colours
belonging to A \ {λ, µ}, and there is a colour ζ ∈ C1

2 , (w) ζ = (M)5,5, see Figure 3.



α β . . ◦ . .
ζ/. ./ζ α β ◦ ◦ ◦
γ . . . . • •
. γ . . . • •
. . . . ζ . .
. . . . . . .




Fig. 3.

If a 2-colour η appears in a bullet position, then, since the pair {η, ζ} is good, the
second copy of η must occupy a circle position. In such a case, however, it is easy to
check that there is a set {ϑ, ι} ⊆ A ∩ C2 of 2-colours occupying two bullet positions
and two circle positions, which contradicts either Claim 3.3 or Claim 3.4.

The case (j, l) 6= (1, 2) can be treated similarly.

Claim 3.7. No set {α, β} ⊆ C2 is of the type (22, 2112).

Proof. Let (w) (M)1,1 = α = (M)2,2 and (M)1,2 = β = (M)2,3. First of all, we have
R2(1, 2) = {α, β}. Indeed, if (w) γ ∈ R(1, 2) \ {α, β}, then, by Claim 3.6, necessarily
(M)1,3 = γ = (M)2,1. Each colour δ ∈ C \ R2(1, 2) occupies at least two positions in
[3, 6]× [1, 3] (all pairs {δ, α}, {δ, β}, {δ, γ} are good), hence |C| ≤ 11+b 4·3

2 c = 17 < 19,
a contradiction.

With A = R(1) ∪ R(2) ∪ C(2) any colour γ ∈ C \ A occupies a position
in [3, 6] × {1} as well as in [3, 6] × {3}, hence |C \ A| ≤ 4, |A| ≤ 16,
|C \A| = 19− |A| ≥ 3 and |A| ≥ 15.

Assume first that |A| = 15 and |C \ A| = 4, which yields C \ A ⊆ C3+
(a 2-colour γ ∈ C \ A would satisfy exc(γ) ≥ 3), c3+ = c3 = 4 and
A = C2. For colours γ = (M)1,3 and δ = (M)2,1 their second copies appear in
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[3, 6]× ({2}∪ [4, 7]), and the pair {γ, δ} is good in the corresponding 4×5 submatrix of
M . However, at most one of γ, δ is in [3, 6]×{2}, hence {γ, δ} is good in the submatrix
of M corresponding to [3, 6]× [4, 7].

If the pair {γ, δ} is column-based, then (w) γ = (M)3,4 and δ = (M)4,4, at most
one of colours in [5, 6]× {2} belongs to R(1) ∪ R(2), hence there is a 2-colour ε and
i ∈ [5, 6] such that ε = (M)i,2 = (M)11−i,4 (so that both pairs {ε, γ}, {ε, δ} are
good). For every colour ζ /∈ C(2) ∪ {(M)i,4} occupying a position in [1, 2]× [5, 7] (the
number of such colours is at least 4) there is η ∈ {γ, δ, ε} such that the pair {η, ζ}
is not good, a contradiction.

If the pair {γ, δ} is row-based, (w) γ = (M)3,4 and δ = (M)3,5. If a colour
ε occupies a position in [4, 6] × {2} and does not belong to R(1) ∪ R(2) (there
are at least two such colours), then it must appear in {3} × [6, 7] (pairs {ε, γ}
and {ε, δ} are good), (w) (M)4,2 = ε = (M)3,6 and (M)5,2 = ζ = (M)3,7. If
a 2-colour η is in {6} × [4, 7], then η = (M)3,2 (all pairs {η, ϑ} with ϑ ∈ {γ, δ, ε, ζ}
are good), r3(6) ≥ 2 + 3 = 5 > c3, and so the colouring fM is not proper,
a contradiction.

From now on |A| = 16 and |C \ A| = 3. Suppose first that C \ A ⊆ C3+. From
c3+ ≤ 4 we obtain |A ∩ C3+| ≤ 1.

If (R(1) ∪ R(2)) ∩ C3+ = ∅, then (w) γ = (M)3,2, δ = (M)4,2, ε = (M)5,2 are
2-colours, and their second copies appear in [3, 6]× [4, 7]. Let

J = {j ∈ [4, 7] : C(j) ∩ {γ, δ, ε} 6= ∅};

by Claim 3.5 we know that 2 ≤ |J | ≤ 3. If

(i, j) ∈ S = {(1, 3), (2, 1)} ∪ ([1, 2]× ([4, 7] \ J)),

then g(i, j, {γ, δ, ε}) = 0; note that |S| = 10− 2|J |. On the other hand, the number of
pairs (i, j) ∈ [3, 6]× [4, 7], satisfying g(i, j, {γ, δ, ε}) = 3, is less than |S| (at most 3 if
|J | = 3 and at most 4 if |J | = 2). Thus, there is a 2-colour ζ in S and η ∈ {γ, δ, ε}
such that the pair {ζ, η} is not good.

If |(R(1) ∪ R(2)) ∩ C3+| = 1, then c3 = c3+ = 4 and c2(2) = 6.
Suppose first that both γ = (M)1,3 and δ = (M)2,1 are 2-colours. The second

copies of γ, δ are then in [3, 6]× [4, 7], for if not,

max(exc(γ), exc(δ)) ≥ 1 + |C \A| = 4.

If the pair {γ, δ} is column-based, then (w) γ = (M)3,4 and δ = (M)4,4 so
that (M)5,2 = ε = (M)6,4 and (M)6,2 = ζ = (M)5,4 (all pairs {ε, γ}, {ε, δ}, {ζ, γ},
{ζ, δ} are good). For (i, j) ∈ [1, 2] × [5, 7] then g(i, j, {γ, δ, ε, ζ}) = 1, and at least
three positions in [1, 2] × [5, 7] are occupied by a 2-colour that is in [3, 6] × [5, 7];
on the other hand, for (i, j) ∈ [3, 6] × [5, 7] we have g(i, j, {γ, δ, ε, ζ}) ≤ 2,
a contradiction.

If the pair {γ, δ} is row-based, then (w) γ = (M)3,4 and δ = (M)3,5.
Then g(i, j, {γ, δ}) = 0 for (i, j) ∈ [4, 6] × {2} and g(i, j, {γ, δ}) ≤ 1 for
(i, j) ∈ [4, 6] × [4, 7]; this leads to a contradiction, since at least one of colours in
[4, 6]× {2} has its second copy in [4, 6]× [4, 7].
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So, one of γ, δ is a 2-colour and the other a 3-colour, (w) γ ∈ C2 and δ ∈ C3. As
above, the second copy of γ appears in [3, 6]× [4, 7], (w) γ = (M)3,4. All colours of
the set B = {ε, ζ, η, ϑ}, where ε = (M)3,2, ζ = (M)4,2, η = (M)5,2 and ϑ = (M)6,2,
are 2-colours. By Claim 3.3, the second copy of a colour ι ∈ B does not appear in
C(1) ∪ C(3), hence is in [3, 6]× [4, 7] and, additionally, in R(3) ∪ C(4), provided that
ι 6= ε (the pair {ι, γ} is good). Then |B ∩R(3)| ≤ 3, since otherwise exc(ε) ≥ 3. So, by
Claim 3.5, with B′ = {ζ, η, ϑ} we have 1 ≤ |B′ ∩ C(4)| ≤ 2.

If |B′ ∩ C(4)| = 2, then (w) η = (M)4,4, ζ = (M)4,5 (here we use Claim 3.4) and
ϑ = (M)3,5. For both l ∈ [6, 7] then g(2, l, B′ ∪ {γ}) = 0. This leads to a contradiction,
since (M)2,6, (M)2,7 are 2-colours, and g(i, j, B′ ∪ {γ}) = 4 only if (i, j) = (6, 4).

If |B′ ∩ C(4)| = 1, then (w) ζ = (M)5,4, η = (M)3,5 and ϑ = (M)3,6
so that g(2, 7, B′ ∪ {γ}) = 0. A contradiction follows from the fact that
g(i, j, B′ ∪ {γ}) ≤ 3 for each (i, j).

Now suppose that (C \ A) ∩ C2 6= ∅, (w) γ = (M)3,1 = (M)4,3 ∈ (C \ A) ∩ C2.
For m ∈ {2, 3, 3+}, n ∈ [1, 2] let Cnm be the set of colours in Cm having n copies in
[5, 6]× [4, 7] and cnm = |Cnm|; then

c1
2 + c1

3+ + 2c2
3+ = 8. (3.7)

Since g(i, j, {α, β, γ}) = 0 for (i, j) ∈ [5, 6]× [4, 7] and g(i, j, {α, β, γ}) = 3 if and only
if (i, j) ∈ S = {(1, 3), (2, 1), (3, 2), (4, 2)}, we have

c1
2 + c2

3 ≤ 4. (3.8)

Let us first show that c1
2 ≤ 3. Indeed, if c1

2 = 4, then all pairs {δ, ε} ∈
(
C1

2
2
)

are good only if there is i ∈ [5, 6] such that C1
2 ⊆ R(i). This immediately im-

plies c2
3+ = 0 and, by Claim 3.2.4 and (3.7), 4 ≥ c3+ ≥ c1

3+ = 4, c3+ = 4
and C3+ ⊆ R(11 − i). Then δ = (M)11−i,2 ∈ C2, the second copy of δ is
in [3, 4] × [4, 7] (by Claim 3.3), hence at least one of pairs {δ, ε} with ε ∈ C1

2
is not good, a contradiction.

Further, we prove that
c1

3+ + c2
3+ = c3+, (3.9)

which is equivalent to
C1

3+ ∪ C2
3+ = C3+. (3.10)

If c4+ ≥ 1, then Claim 3.2.8 yields c3+ ≤ 3. Because of (3.7) we obtain

2(c1
3+ + c2

3+) = 8 + c1
3+ − c1

2,

c1
3+ + c2

3+ = 1
2(8 + c1

3+ − c1
2) ≥ 1

2(8− 3) = 5
2 ,

3 ≥ c3+ ≥ c1
3+ + c2

3+ ≥ 3,

and so (3.9) is true under the assumption c4+ ≥ 1 (implying c3+ = 3).
On the other hand, c4+ = 0 implies c3+ = c3 = 4 (Claim 3.2.7). In this case, using

(3.7) and (3.8), we see that

8 = (c1
2 + c2

3+) + (c1
3+ + c2

3+) ≤ 4 + c3+ = 8,
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hence
c3+ = 4 = c1

2 + c2
3+ = c1

3+ + c2
3+,

and (3.9) holds again.
Note that now necessarily

|(C \A) ∩ C2| = 1.

Indeed, |(C \A) ∩ C2| = 3 is impossible by Claim 3.5, since in such a case

c2(1, 3) ≥ |(C \A) ∩ C2| = 3.

Moreover, by Claims 3.3 and 3.4, the assumption |(C\A)∩C2| = 2 would mean that for
the unique colour δ ∈ (C \A)∩C3+ there is i ∈ [5, 6] such that (M)i,1 = δ = (M)11−i,3;
however, according to (3.10), δ has an exemplar in [5, 6]× [4, 7], and so the colouring
fM is not proper, a contradiction.

Thus
|(C \A) ∩ C3+| = 2. (3.11)

Because of a reasoning analogous to that above we see that each colour of (C \A)∩C3+
occupies exactly one position in [5, 6]× {1, 3},

(C \A) ∩ C3+ = C1
3+, (3.12)

and then, using (3.10),
C3+ ⊆ R(5) ∩ R(6). (3.13)

Now if c4+ ≥ 1 (and, consequently, c3+ = 3, which we have seen already),
then, by (3.9), (3.11) and (3.12), c1

3+ = 2 and c2
3+ = 1; since c1

2 ≤ 3, in such
a case c1

2 + c1
3+ + 2c2

3+ ≤ 7 in contradiction with (3.7).
Therefore, in the rest of the proof of Claim 3.7 we work with c4+ = 0, c3+ = 4,

c1
3+ = 2, c2

3 = c2
3+ = 2 and c1

2 = 2, see (3.7), (3.9), (3.11), (3.12). Moreover, all positions
in S are occupied by colours of C1

2 ∪C2
3 . If δ = (M)i,j ∈ C1

2 with (i, j) ∈ {(1, 3), (2, 1)},
then, because of (3.11), (3.12) and (3.13),

exc(δ) ≥ 1 + |(C \A) ∩ C3+| = 1 + c1
3+ = 3,

a contradiction.
Thus {(M)1,3, (M)2,1} ⊆ C2

3+, and for a 2-colour ε occupying a position in
[5, 6] × {1, 3} (there are two such colours), by (3.13) we have exc(ε) ≥ c3+ − 1 = 3,
a contradiction again.

Claim 3.8. If i, k ∈ [1, 6], i 6= k, then r2(i, k) ≤ 2.

Proof. The assumption r2(i, k) ≥ 3 would be in contradiction with Claim 3.6
or Claim 3.7.
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Claim 3.9. No set {α, β, γ} ⊆ C2 is of the type (312111, 312111).
Proof. Having in mind Claim 3.4 (or else Claim 3.7), assume (w) (M)1,1 = α = (M)2,2,
(M)1,2 = β = (M)2,1 and (M)1,3 = γ = (M)3,1. Let A1 be the set of colours occupying
a position in

({1} × [4, 7]) ∪ ([4, 6]× {1}) ∪ {(2, 3), (3, 2)},
An the set of colours in

({n} × [4, 7]) ∪ ([4, 6]× {n}) for n = 2, 3,

Anm = Cm ∩An and anm = |Anm| for m ∈ {2, 3+}, n ∈ [1, 3]. Then

|A1| = a1
2 + a1

3+ = 9, (3.14)
|A2| = a2

2 + a2
3+ = 7, (3.15)

A1 ∩A2 = ∅, (3.16)

since otherwise exc(α) ≥ 3. Moreover, |A3| ≤ 7 and A2 ⊆ A3 (each pair {γ, η} with
η ∈ A2 is good), hence, by (3.15),

A2 = A3. (3.17)

Let us show that distinct colours δ = (M)2,3, ε = (M)3,2 (a consequence of (3.14))
satisfy

{δ, ε} ⊆ C3+. (3.18)
Indeed, if η = (M)i,5−i ∈ {δ, ε} ∩ C2 for some i ∈ [2, 3] and (w) η = (M)4,4, then all
colours appearing in

({i} × [4, 7]) ∪ ([4, 6]× {5− i}) ∪ {(5− i, 4), (4, i)}

belong to A2 \ {η}, hence, by (3.15) and (3.17),

exc(η) ≥ 9− (7− 1) = 3,

a contradiction.
Further, with ζ = (M)3,3 we have

ζ ∈ C3+ ∩A1. (3.19)

To see it realise first that, since the pair {ζ, α} is good and fM is proper, we get
ζ /∈ A2 ∪ {δ, ε} and ζ ∈ A1. Moreover, ζ ∈ C3+, because the assumption ζ ∈ R2(1)
(ζ ∈ C2(1)) contradicts Claim 3.7 (Claim 3.4, respectively).

By (3.14), (3.15) and Claim 3.2.4, we have

a1
2 + a2

2 ≥ (9 + 7)− c3+ ≥ 12. (3.20)

Further, by (3.14), (3.15) and (3.18)–(3.20),

5 ≤ a1
2 ≤ 6, (3.21)

6 ≤ a2
2 ≤ 7. (3.22)
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Consider a colour η ∈ A1
2 ∩ R(1) (from(3.21) we see that there are at least two

such colours), (w) η = (M)1,j = (M)4,l. Then from

g(1, j, A2
2) ≤ g(1, j, A2) = 2 and g(4, l, A2

2) ≤ g(4, l, A2) ≤ 4

it follows that a2
2 ≤ 2 + 4 = 6, hence, by (3.15), (3.21), (3.22), a1

2 = a2
2 = 6

and a2
3+ = 1.

Suppose first ζ ∈ C(1) so that all positions in {1} × [4, 7] are occupied by colours
of A1

2. If η = (M)1,j , j ∈ [4, 7], then proceeding similarly as above we find that both
positions in [2, 3] × {j} are occupied by colours of A2

2. Thus R2(2, 3) consists of at
least two colours of A2

2. By Claim 3.8 we obtain r2(2, 3) = 2, (w) (M)2,4 = ϑ = (M)3,5
and (M)2,5 = ι = (M)3,4. Now κ = (M)1,6 satisfies κ ∈ C(4)∪C(5) (the pair {κ, ϑ} is
good) and, analogously, λ = (M)1,7 ∈ C(4)∪C(5). By Claim 3.6, the copies of κ, λ that
are in [4, 6]× [4, 5] do not share a row, (w) one of them is in R(4) and the other in R(5).
Then, however, reasoning similarly as above again, all positions in [4, 5]× [2, 3] are
occupied by colours of A2

2. Consequently, the unique colour of A2
3+ is (M)6,2 = (M)6,3,

and fM is not proper.
If ζ ∈ R(1), (w) ζ = (M)1,7, then all positions in

({1} × [4, 6]) ∪ ([4, 6]× {1})

are occupied by colours of A1
2, which implies that all positions in

([2, 3]× [4, 6]) ∪ ([4, 6]× [2, 3])

are occupied by colours of A2
2. So, the unique colour of A2

3+ is (M)2,7 = (M)3,7,
a contradiction.

4. FINAL ANALYSIS

We are now ready to do the final analysis for proving Theorem 1.3. Suppose (w) that
r2(1) ≥ r2(i) for i ∈ [2, 6], which, by Claim 3.2.3, implies

7 ≥ r2(1) ≥
⌈

2c2
6

⌉
≥
⌈

30
6

⌉
= 5. (4.1)

Given r2(1) we assume (w) that the sequence S = (r2(1, i))6
i=2 is nonincreasing. Since

r2(1) ∈ [5, 7], we have r2(1, 2) ≥ d r2(1)
5 e ≥ 1, r2(1, 6) ≤ b r2(1)

5 c = 1, and Claim 3.8
yields r2(1, 2) ≤ 2. We suppose (w) that

j ∈ [1, r2(1)]⇒ (M)1,j ∈ C2,

and, more precisely,

(M)1,1 = α, (M)1,2 = β, (M)1,3 = γ, (M)1,4 = δ, (M)1,5 = ε,

r2(1) ≥ 6⇒ (M)1,6 = ζ, r2(1) = 7⇒ (M)1,7 = η.



178 Mirko Horňák

Let p be the smallest integer in [2, 6] such that r2(1, i) ≤ 1 for every i ∈ [p, 6];
p is correctly defined since r2(1, 6) ≤ 1. Then

r2(1, i) = 1⇔ i ∈ [p, r2(1) + 3− p],

and, counting the number of positions in [2, 6]× [1, 7] occupied by colours of R2(1),
we obtain

2(p− 2) ≤ r2(1) ≤ 2(p− 2) + (7− p),

which yields

r2(1)− 3 ≤ p ≤
⌊
r2(1) + 4

2

⌋
≤ 5. (4.2)

Moreover, because of Claims 3.6 and 3.7 we have

p ≥ 3⇒ ((M)2,1 = β ∧ (M)2,2 = α),
p ≥ 4⇒ ((M)3,3 = δ ∧ (M)3,4 = γ),
p = 5⇒ ((M)4,5 = ζ ∧ (M)4,6 = ε).

Let qj = |R2(1)∩C(j)| for j ∈ [1, 7]. By Claim 3.9 we know that a 2-colour µ, which
occupies a position in {1} × [2p− 3, r2(1)], satisfies µ /∈ C(j) for every j ∈ [1, 2p− 4],
hence qj = 2 for any j ∈ [1, 2p− 4], and

7∑

j=2p−3
qj = 2[r2(1)− (2p− 4)] = 2r2(1) + 8− 4p; (4.3)

further,
j ∈ [2p− 3, 7]⇒ qj ≤ 3, (4.4)

since with qj ≥ 4 and µ ∈ R2(1) ∩ C(j) for some j ∈ [2p − 3, 7] we have exc(µ) ≥
qj − 1 ≥ 3. Notice also that

j ∈ [2p− 3, r2(1)]⇒ 1 ≤ qj ≤ min(3, r2(1) + 4− 2p), (4.5)

because 2-colours occupying a position in [1, 6] × {j} are distinct from
2p − 4 (2-)colours appearing in {1} × [1, 2p − 4]. Moreover, we assume
(w) that the sequence (qj)r2(1)

j=2p−3 is nonincreasing, and that, if (r2(1), p) = (5, 2),
the sequence (q1, q2, q3, q4, q5) is nonincreasing.

For every pair (r2(1), p) obeying (4.1) and (4.2), we analyse the set Q(r2(1), p) of
sequences (qj)7

j=2p−3 satisfying all restrictions (4.3)–(4.5). More precisely, we show
that the assumption that M is characterised by an arbitrary sequence Q ∈ Q(r2(1), p)
leads to a contradiction, mostly because of Σ ≥ 13 (a contradiction to Claim 3.2.10) or
the existence of a line of M containing at least five copies of 3+colours (by Claim 3.2.4
then the colouring fM is not proper).
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The structure of the sets Q(r2(1), p) with (r2(1), p) 6= (5, 2) follows:

Q(7, 5) = ∅,
Q(7, 4) = {(3, 2, 1), (2, 2, 2)},
Q(6, 5) = {(0)},
Q(6, 4) = {(2, 2, 0), (2, 1, 1), (1, 1, 2)},
Q(6, 3) = {(3, 3, 1, 1, 0), (3, 2, 2, 1, 0), (3, 2, 1, 1, 1), (3, 1, 1, 1, 2), (2, 2, 2, 2, 0),

(2, 2, 2, 1, 1), (2, 2, 1, 1, 2), (2, 1, 1, 1, 3)},
Q(5, 4) = {(1, 1, 0)},
Q(5, 3) = {(3, 2, 1, 0, 0), (3, 1, 1, 1, 0), (2, 2, 2, 0, 0), (2, 2, 1, 1, 0), (2, 1, 1, 2, 0),

(2, 1, 1, 1, 1), (1, 1, 1, 3, 0), (1, 1, 1, 2, 1)}.

As we shall see later, it is not necessary to know the structure of Q(5, 2)
explicitly.

Our analysis is organised according to the following rules: All visible colours
in M (those represented by Greek alphabet letters) are 2-colours, and both copies of
a visible colour are present in M . Asterisk entries in M represent 3+colours. Some
asterisk entries appear in M by definition, e.g., each asterisk entry in the first row of
M occupies a position in {1} × [r2(1) + 1, 7]. Another reason why an asterisk entry
appears in M is that, if the corresponding position is occupied by a 2-colour λ, then
putting another copy of λ to a free position (i.e., one that is not occupied by a visible
colour) in any proper way (so that the resulting partial vertex colouring f ′ of K6�K7
is proper) leads to a situation, in which no continuation of f ′ to a proper complete
vertex colouring of K6�K7 is possible, because at least one pair {λ, µ}, where µ is a
visible colour, is not good.

To simplify the description of matrices appearing in our analysis we frequently use
the notation “Q = Q̃, Figure xy:” or “Q = Q̃, (w) Figure xy:”, where Q̃ ∈ Q((r2(1), p)).
It means that the situation, in whichM is characterised by the sequence Q̃, is analysed
in Figure xy (and possibly Proposition 2.2 is involved).

If Q = (3, 2, 1), then (w) (M)4,5 = ζ, (M)5,5 = η and (M)6,6 = ε, hence
the set {ε, ζ} is of the type (2112, 22), which contradicts Claim 3.4.

In the case Q = (2, 2, 2) we are (w) in the situation of Figure 4. If
a 2-colour µ occupies a position in {k} × [2l − 1, 2l] for some k ∈ [4, 6] and
l ∈ [1, 2], then µ = (M)4−l,h(k), where h(k) = 1

2 (3k2 − 31k + 90), and ν ∈ C3+
for each colour ν occupying a position in ([4, 6] \ {k}) × [5 − 2l, 6 − 2l] (with
ν ∈ C2 the pair {µ, ν} is not good). As a consequence, at least nine positions in
[4, 6] × [1, 4] are occupied by 3+colours. Besides that, if µ = (M)i,j ∈ C2 with
(i, j) ∈ {(2, 3), (2, 4), (3, 1), (3, 2)}, the second copy of µ must occupy one of the
positions (4, 7), (5, 5), (6, 6). Altogether we have

Σ ≥ 3 + 9 + 1 = 13.
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Q = (0), Figure 5: Because of

c2(7) ≥ 6− c3+ ≥ 2

we suppose (w) η = (M)2,7 ∈ C2 so that η is in {(3, 5), (3, 6), (4, 3), (4, 4)}.
Under the assumption η ∈ R(3) we have (w) η = (3, 5). Let C ′2 be the set of

2-colours occupying a position in [5, 6]× [1, 6]; the inequality c3+ ≤ 4 implies |C ′2| ≥ 6.
If µ ∈ C ′2, then from the fact that each pair {µ, ν} with ν ∈ C ′′2 = {α, β, γ, δ, η} is
good one easily gets that the second copy of µ occupies a position in [2, 3] × [1, 6].
As g(4, 7, C ′′2 ) = 0 and g(i, j, C ′′2 ) ≤ 5 provided that (i, j) ∈ [2, 3] × [1, 6] is a dot
position, we obtain ω = (M)4,7 ∈ C3+ (notice that ω /∈ C ′2), hence (M)3,7 ∈ C2. Then
exc(η) ≥ 4, since we can uncolour vertices (i, j) with i ∈ [2, 3] and (M)i,j ∈ C3+ (here
we use r3+(i) ≥ 1 and C3+ ⊆ C(7)), as well as the vertices (5, 5), (6, 5) (independently
from the frequencies of (M)5,5 and (M)6,5) without affecting the completeness of the
colour class η in the resulting partial colouring.

In the case η ∈ R(4) we obtain a contradiction similarly as above.
The assumption Q = (2, 2, 0) means that (w) (M)4,5 = ζ and (M)5,6 = ε, hence

the type of the set {ε, ζ} is (2112, 22) in contradiction to Claim 3.4.
For Q = (2, 1, 1) the situation is (w) depicted on Figure 6. If λ = (M)6,j ∈ C2,

where j ∈ [2k−1, 2k] with k ∈ [1, 2], then λ = (M)4−k,5. As a consequence, r3+(6) = 4,
η = (M)6,5 ∈ C2, and with µ = (M)2,5, ν = (M)3,5 we have {µ, ν} ⊆ R(6). Then,
however, exc(η) ≥ 3 (µ, ν and at least one 3+colour contribute to the excess of η).




α β γ δ ε ζ η
β α . . . . .
. . δ γ . . .
. . . . ζ ∗ .
. . . . . η ∗
. . . . ∗ . ε







α β γ δ ε ζ ∗
β α . . . . .
. . δ γ . . .
. . . . ζ ε .
. . . . . . ∗
. . . . . . ∗







α β γ δ ε ζ ∗
β α . . . . .
. . δ γ . . .
. . . . ζ ∗ .
. . . . . . ε
. . . . . ∗ ∗




Fig. 4. Fig. 5. Fig. 6.

Q = (1, 1, 2), Figure 7: Similarly as above we see that r3+(6) = 4,
η = (M)6,7 ∈ C2, {(M)2,7, (M)3,7} ⊆ R2(6), and so exc(η) ≥ 4.

If Q = (3, 3, 1, 1, 0), then (w) (M)3,3 = δ, (M)4,3 = ε and γ ∈ {(M)5,4, (M)6,4} so
that the type of the set {γ, δ} contradicts Claim 3.4.

If Q = (3, 2, 2, 1, 0), then, having in mind Claim 3.4, we are (w) in the situation of
Figure 8. Further, η = (M)2,7 ∈ C2 and ϑ = (M)5,7 ∈ C2, which implies η = (M)5,3
and ϑ = (M)2,3. Consequently, both positions in {(3, 4), (4, 6)} are occupied by
3+colours, and, provided that µ = (M)i,j ∈ C2 for some (i, j) ∈ [3, 6] × [1, 2], then
(i, j) ∈ {(5, 1), (5, 2)} and µ = (M)6,3. Therefore,

Σ ≥ 4 + 2 + 7 + r3+(2) ≥ 14.

Q = (3, 2, 1, 1, 1), (w) Figure 9 (using Claim 3.4 again): If a bullet position is
occupied by a 2-colour µ, then the second copy of µ occupies a dot position. Therefore,

Σ ≥ 4 + (19− 6) = 17.
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α β γ δ ε ζ ∗
β α . . . . .
. . δ γ . . .
. . . . ∗ . ε
. . . . . ∗ ζ
. . . . ∗ ∗ .







α β γ δ ε ζ ∗
β α . . . . .
. . δ . . . ∗
. . ζ . . . ∗
. . . ε . . .
. . . . γ . ∗







α β γ δ ε ζ ∗
β α . . • • •
• • δ . ∗ • ∗
• • ε . ∗ • •
• • . ζ • • •
• • . . • • γ




Fig. 7. Fig. 8. Fig. 9.

Q = (3, 1, 1, 1, 2), (w) Figure 10: Analogously as in the case of Figure 9 we obtain

Σ ≥ 5 + (19− 6) = 18.

Under the assumption Q = (2, 2, 2, 2, 0) we have g(i, 7, {α, β, γ, δ, ε, ζ}) = 1
for any i ∈ [3, 6] and g(k, l, {α, β, γ, δ, ε, ζ}) ≤ 4 for any position (k, l) ∈
[2, 6] × [1, 6] occupied by a colour of C \ {α, β, γ, δ, ε, ζ}, hence c3+(7) ≥ 5,
a contradiction.

If Q = (2, 2, 2, 1, 1), then because of Claim 3.4 (w) there are two possibilities for
the structure of M , see Figures 11 and 12.



α β γ δ ε ζ ∗
β α . • • • .
• • δ ∗ • • .
• • ε • ∗ • .
• • . ∗ ∗ • γ
• • . • • • ζ







α β γ δ ε ζ ∗
β α . . . . .
. . δ • . • •
. . . ε • • •
. . • . γ • •
. . . . . ∗ ζ







α β γ δ ε ζ ∗
β α . . . . .
. . δ ∗ . ∗ .
. . . ε . . ∗
. . . . ζ ∗ .
. . . . . . γ




Fig. 10. Fig. 11. Fig. 12.

In the case of Figure 11 a bullet position can be occupied by a 2-colour only if the sec-
ond copy of that colour appears in {2}× [3, 5]. A position in {(2, 6), (2, 7), (6, 1), (6, 2)}
is occupied by a 2-colour only if the second copy of that colour is in {(3, 5), (4, 3), (5, 4)}.
Further, at most one of the two colours in {i}× [1, 2] with i ∈ [3, 5] is a 2-colour (which
is in {6} × [3, 5]). Therefore

Σ ≥ 2 + (9− 3) + (4− 3) + 3 · 1 + r3+(2) ≥ 13.

In the situation of Figure 12 let

k = max(i ∈ {2, 3, 5} : (M)i,7 ∈ C2) and η = (M)k,7.

The assumption k = 2 implies η ∈ {(M)3,5, (M)5,4}.
If η = (M)3,5, see Figure 13, then

Σ ≥ 13 + r3+(2) ≥ 14.

In the case η = (M)5,4 depicted in Figure 14 we have r3+(3) ≥ 5.
If k = 3 (Figure 15), then η = (M)2,5, and from r3+(2) ≥ 1 it follows that

exc(α) ≥ 3, a contradiction.
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α β γ δ ε ζ ∗
β α . . . . η
. . δ ∗ η ∗ ∗
∗ ∗ . ε . . ∗
∗ ∗ . . ζ ∗ ∗
∗ ∗ . . . . γ







α β γ δ ε ζ ∗
β α . . . . η
∗ ∗ δ ∗ . ∗ ∗
. . . ε . . ∗
. . . η ζ ∗ ∗
∗ ∗ . . . . γ







α β γ δ ε ζ ∗
β α . . η . .
. . δ ∗ . ∗ η
∗ ∗ . ε . . ∗
∗ ∗ . . ζ ∗ ∗
. . ∗ . . . γ




Fig. 13. Fig. 14. Fig. 15.

Figure 16 corresponds to k = 5, requiring η = (M)2,4. If ϑ ∈ C2 is in {4}×[1, 2], then
ϑ = (M)5,3, and, if ι ∈ C2 is in {6} × [1, 2], then ι = (M)5,4. So, c3+(1) + c3+(2) ≥ 4,
which implies exc(α) ≥ 3.

In the case Q = (2, 2, 1, 1, 2), using Claim 3.4, (w) the description by Figure 17
applies. Claim 3.9 implies that a 2-colour occupying a position in [3, 6]× [1, 2] does
not appear in {2} × [3, 7]. Therefore, for any i ∈ [3, 6] at most one of the positions in
{i} × [1, 2] is occupied by a 2-colour; as a consequence of c3+ ≤ 4 and r3+(2) ≥ 1 then
exc(α) ≥ 3.

If Q = (2, 1, 1, 1, 3), then (w) we have the situation of Figure 18 with

Σ ≥ 5 + (19− 6) = 18

(reasoning as in Figure 9).



α β γ δ ε ζ ∗
β α . η . . .
∗ ∗ δ ∗ . ∗ .
. . . ε . . ∗
. . . . ζ ∗ η
. . . . . ∗ γ







α β γ δ ε ζ ∗
β α . . . . .
. . δ . . ∗ .
. . . ε ∗ . .
. . ∗ . ∗ . γ
. . . . . ∗ ζ







α β γ δ ε ζ ∗
β α . • • • .
• • δ • • • .
• • . • ∗ ∗ γ
• • . • ∗ • ε
• • . • • ∗ ζ




Fig. 16. Fig. 17. Fig. 18.

The assumption r2(1) = 5 implies r2(i) = 5 and r3+(i) = 2 for each i ∈ [1, 6], hence

c2 = 1
2

6∑

i=1
r2(i) = 15,

and, by Claims 3.2.6, 3.2.7, c3+ = c3 = 4.
If Q = (1, 1, 0), then we are (w) in the situation of Figure 19. Each colour of C2(7)

has its second copy in [2, 4]× [1, 6], hence at least

5 + 2c2(7) +
4∑

i=2
r3+(i) = 11 + 2c2(7) ≥ 15

positions in [2, 4]× [1, 7] are occupied by colours of {α, β, γ, δ, ε} ∪C2(7) ∪C3+. Since
a colour in R2(5) ∪ R2(6) has its second copy in [2, 4]× [1, 6], we have

r2(5) + r2(6) ≤ 18− (15− 3) = 6
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and
4 = r3+(5) + r3+(6) = 14− [r2(5) + r2(6)] ≥ 8,

a contradiction.
If Q = (3, 2, 1, 0, 0), then the set {γ, δ} ⊆ C2 is of the type (2112, 22), which

contradicts Claim 3.4.
Q = (3, 1, 1, 1, 0), (w) Figure 20: A bullet position can be occupied by

a colour µ ∈ C2 only if µ = (M)2,3. That is why r3+(6) ≥ 3, a contradiction.
Q = (2, 2, 2, 0, 0), (w) Figure 21: If a bullet position is occupied by a colour µ ∈ C2,

then µ ∈ {(M)3,5, (M)4,3, (M)5,4}. One can easily see that if i ∈ [3, 5], then at most
one of colours in {i} × [6, 7] is a 2-colour. Therefore, if (M)2,j ∈ C3+ for both j = 6, 7,
then

c3+(6) + c3+(7) ≥ 3 · 2 + 3 · 1 = 9,
and there is j ∈ [6, 7] with c3+(j) ≥ 5, a contradiction. Thus, there is j ∈ [6, 7] with
(M)2,j ∈ C2. Then, however, since (M)6,1, (M)6,2 ∈ C2 (a consequence of r3+(6) = 2),
the pair {(M)2,j , (M)6,l} is not good for l = 1, 2.




α β γ δ ε ∗ ∗
β α . . . . .
. . δ γ . . .
. . . . . ε .
. . . . . . ∗
. . . . . . ∗







α β γ δ ε ∗ ∗
β α . . . . .
. . δ • . . •
. . ε . • . •
. . . . . γ •
. . . • • • •







α β γ δ ε ∗ ∗
β α . . . • •
. . δ . . . .
. . . ε . . .
. . . . γ . .
• • . . . ∗ ∗




Fig. 19. Fig. 20. Fig. 21.

If Q = (2, 2, 1, 1, 0), then (w), by Claim 3.4, the situation is depicted in Figure 22.
If a 2-colour µ is in {(2, 7), (6, 1), (6, 2)}, then µ ∈ {(M)4,3, (M)5,4}, and if a 2-colour
ν is in {(5, 7), (6, 6)}, then ν = (M)2,4. From r3+(6) = 2 it follows that there is a
2-colour ζ in {6} × [1, 2]; as a consequence then ω = (M)2,7 ∈ C3+ (with ω ∈ C2
the pair {ω, ζ} is not good), η = (M)5,7 = (M)2,4 ∈ C2, (M)6,6 ∈ C3+, and each
colour, occupying a position in {6} × [1, 2], is a 2-colour. In such a case, however, with
ϑ = (M)4,3 ∈ {(M)6,1, (M)6,2} the pair {ϑ, η} is not good.

Q = (2, 1, 1, 2, 0), (w) Figure 23: If ζ ∈ {(M)3,7, (M)6,4} ∩ C2, then
ζ = (M)2,6, and if η ∈ {(M)5,7, (M)6,5}∩C2, then η = (M)2,3. Therefore, at least two
positions in {(3, 7), (5, 7), (6, 4), (6, 5)} are occupied by 3+colours. Since c3+(7) ≤ 4,
at most one position in {(3, 7), (5, 7)} and at least one position in {(6, 4), (6, 5)} is
occupied by a 3+colour. Further, from r3+(6) = 2 it follows that exactly one position
in {(6, 4), (6, 5)} and in {(3, 7), (5, 7)} as well is occupied by a 3+colour. Consequently,
by Claim 3.6, (M)2,7, (M)6,1 and (M)6,2 are three distinct 2-colours; this, however,
leads to a contradiction, because if ϑ ∈ {(M)2,7, (M)6,1, (M)6,2}∩C2, then necessarily
ϑ ∈ {(M)3,6, (M)5,3}.

If Q = (1, 1, 1, 3, 0), then we have (w) {γ, δ, ε} ∩ R(6) = ∅. If a position in
{6} × ([1, 5] ∪ {7}) is occupied by a 2-colour ζ, then ζ = (M)2,6, which yields
r3+(6) ≥ 5, a contradiction.
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If Q = (1, 1, 1, 2, 1), then the situation is (w) described by Figure 24. If a 2-colour
ζ is in {6} × [1, 2], then ζ = (M)5,6, hence r3+(6) ≥ 3.




α β γ δ ε ∗ ∗
β α . . . . .
. . δ . . . ∗
. . . ε . . .
. . . . . γ .
. . . . . . ∗







α β γ δ ε ∗ ∗
β α . . . . .
. . δ . . . .
. . . . . γ ∗
. . . . . ε .
. . . . . . ∗







α β γ δ ε ∗ ∗
β α . . . . .
. . ∗ . . γ .
. . . ∗ . δ .
. . . . . . ε
. . ∗ ∗ . . .




Fig. 22. Fig. 23. Fig. 24.

If Q ∈ Q(5, 2), then we have
∑7
j=1 qj = 10. Let J = {j ∈ [1, 7] : qj ≥ 2}. In

the case |J | ≤ 3 realise that any colour ζ ∈ C2 \ {α, β, γ, δ, ε} requires existence of
a sufficient pair (i, j) ∈ [2, 6] × [1, 7], i.e., one satisfying g(i, j, {α, β, γ, δ, ε}) ≥ 3. If
(i, j) is a sufficient pair, then necessarily j ∈ J . Moreover, given j ∈ J , the number of
sufficient pairs (i, j) is at most three. This is certainly true if qj = 3. On the other
hand, if qj = 2 and (M)k,l = (M)1,j with k 6= 1, then, by Claim 3.7 and the fact that
p = 2, (M)k,j /∈ {α, β, γ, δ, ε}, which means that g(k, j, {α, β, γ, δ, ε}) = 2, and there
are at most three i’s such that the pair (i, j) is sufficient. Therefore, c2 ≤ 5 + 3 · 3 = 14,
which contradicts Claim 3.2.3.

So, we have |J | ≥ 4. If q1 = 3, then

10 =
7∑

j=1
qj ≥ 3 + 3 · 2 + 1 · 1 = 10,

hence q2 = q3 = q4 = 2, q5 = 1 and q6 = q7 = 0. If ζ = (M)i,j ∈ C2
with (i, j) ∈ [2, 6] × [6, 7], then, since g(i, j, {α, β, γ, δ, ε}) = 1, we have
ζ ∈ C2(1) \ {α, β, γ, δ, ε}. Thus

c3+(6) + c3+(7) ≥ 2 + (10− 3) = 9,

and there is j ∈ [6, 7] with c3+(j) ≥ 5, a contradiction.
If q1 ≤ 2, then

g(i, j, {α, β, γ, δ, ε}) ≤ qj + 1 ≤ q1 + 1 ≤ 3

for every (i, j) ∈ [2, 6] × [1, 5], hence g(k, l, {α, β, γ, δ, ε}) ≥ 2 whenever
(k, l) ∈ [2, 6] × [6, 7] and (M)k,l ∈ C2, which implies ql ≥ 1, l = 6, 7.
As a consequence, then

10 =
7∑

j=1
qj ≥ 2|J |+ (7− |J |) = |J |+ 7 ≥ 11,

a final contradiction proving Theorem 1.3.
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