THE ACHROMATIC NUMBER OF $K_6 \square K_7$ IS 18

Mirko Horňák

Communicated by Adam Paweł Wojda

Abstract. A vertex colouring $f: V(G) \to C$ of a graph G is complete if for any two distinct colours $c_1, c_2 \in C$ there is an edge $\{v_1, v_2\} \in E(G)$ such that $f(v_i) = c_i$, $i = 1, 2$. The achromatic number of G is the maximum number $achr(G)$ of colours in a proper complete vertex colouring of G. In the paper it is proved that $\operatorname{achr}(K_6 \square K_7) = 18$. This result finalises the determination of $\operatorname{achr}(K_6 \square K_q)$.

Keywords: complete vertex colouring, achromatic number, Cartesian product.

Mathematics Subject Classification: 05C15.

1. INTRODUCTION

Consider a finite simple graph G and a finite colour set C . A vertex colouring $f: V(G) \to C$ is *complete* if for any two distinct colours $c_1, c_2 \in C$ one can find an edge $\{v_1, v_2\} \in E(G)$ $(\{v_1, v_2\}$ is usually shortened to v_1v_2) such that $f(v_i) = c_i$. $i = 1, 2$. The *achromatic number* of G, in symbols $achr(G)$, is the maximum cardinality of C admitting a proper complete vertex colouring of G. The invariant was introduced by Harary, Hedetniemi, and Prins in [4], where the following interpolation theorem was proved.

Theorem 1.1. If G is a graph, and $\chi(G) \leq k \leq \text{achr}(G)$ for an integer k, then there exists a k-element colour set C and a proper complete vertex colouring $f: V(G) \to C$.

Let $G \square H$ denote the Cartesian product of graphs G and H (the notation follows the monograph [10] by Imrich and Klavžar). So, $V(K_n \square K_q)$ = $V(K_p) \times V(K_q)$, and $E(K_p \square K_q)$ consists of all edges $(x, y_1)(x, y_2)$ with $y_1 \neq y_2$ and all edges $(x_1, y)(x_2, y)$ with $x_1 \neq x_2$. The problem of determining $\operatorname{achr}(K_p \square K_q)$ is motivated by the fact that, according to Chiang and Fu [2],

$$
\mathrm{achr}(G \square H) \ge \mathrm{achr}(K_p \square K_q)
$$

© 2021 Authors. Creative Commons CC-BY 4.0

for arbitrary graphs G, H with $achr(G) = p$ and $achr(H) = q$. The graph $K_q \square K_p$ is isomorphic to the graph $K_p \square K_q$, hence

$$
\operatorname{achr}(K_q \,\square\, K_p) = \operatorname{achr}(K_p \,\square\, K_q),
$$

and so it is natural to suppose $p \leq q$. The case $p \in \{2,3,4\}$ was solved by Hornak and Puntigán in [9], and that of $p = 5$ by Horňák and Pčola in [7,8].

Proposition 1.2 ([1]). $\text{achr}(K_6 \square K_6) = 18$.

More generally, in [3] Chiang and Fu proved that if r is an odd projective plane order, then

$$
\operatorname{achr}(K_{(r^{2}+r)/2} \square K_{(r^{2}+r)/2}) = (r^{3}+r^{2})/2.
$$

The aim of the present paper is to finalise the determination of $\text{achr}(K_6 \square K_q)$ (for $q \geq 8$ see Horňák [5,6]) by proving

Theorem 1.3. $\text{achr}(K_6 \square K_7) = 18$.

To formulate the complete result describing the achromatic number of $K_6 \Box K_q$ we use the sets $J_a, a \in [3,6]$, where

$$
J_3 = [2, 3] \cup \{q \in [41, \infty) : q \equiv 1 \text{(mod 2)}\},
$$

\n
$$
J_4 = \{1, 4, 7\} \cup [16, 40] \cup \{q \in [42, \infty) : q \equiv 0 \text{(mod 2)}\},
$$

\n
$$
J_5 = \{5, 8\},
$$

\n
$$
J_6 = \{6\} \cup [9, 15].
$$

Note that $J_3 \cup J_4 \cup J_5 \cup J_6 = [1, \infty)$.

Theorem 1.4. If $a \in [3,6]$ and $q \in J_a$, then $\mathrm{achr}(K_6 \square K_a) = 2q + a$.

2. NOTATION AND BASIC FACTS

For $k, l \in \mathbb{Z}$ we denote *integer intervals* by

$$
[k,l] = \{ z \in \mathbb{Z} : k \le z \le l \}, \quad [k,\infty) = \{ z \in \mathbb{Z} : k \le z \}.
$$

Further, for a set A and $m \in [0, \infty)$ let $\binom{A}{m}$ be the set of m-element subsets of A.

Under the assumption that $V(K_r) = [1, r]$ for $r \in [1, \infty)$, a vertex colouring $f: V(K_p \square K_q) \to C$ can be conveniently described using the $p \times q$ matrix $M = M(f)$, in which the entry in the *i*th row and the *j*th column is $(M)_{i,j} = f(i,j).$

If f is proper, then each line (row or column) of M consists of pairwise distinct entries.

If f is complete, then each pair $\{\gamma_1, \gamma_2\} \in \binom{C}{2}$ (of colours in C) is good in M, which means that at least one of the next two conditions is fulfilled:

- (i) the pair $\{\gamma_1, \gamma_2\}$ is row-based (in M), i.e., there are $i \in [1, p]$ and $j_1, j_2 \in [1, q]$ such that $\{\gamma_1, \gamma_2\} = \{(M)_{i,j_1}, (M)_{i,j_2}\},\$
- (ii) the pair $\{\gamma_1, \gamma_2\}$ is *column-based* (in M), i.e., there are $i_1, i_2 \in [1, p]$ and $j \in [1, q]$ such that $\{\gamma_1, \gamma_2\} = \{(M)_{i_1, j_1}(M)_{i_2, j}\}.$

The following is a natural necessary condition for the completeness of f: Given $\gamma \in C$ and $C' \subseteq C \setminus {\gamma}$, the number $g(\gamma, C')$ of pairs ${\gamma, \gamma'}$ with $\gamma' \in C' \setminus {\gamma}$ that are good in M, is at least $|C'|-1$. Note that

$$
g(\gamma, C') \le \sum_{(i,j) : (M)_{i,j} = \gamma} g(i,j,C'),
$$

where $g(i, j, C')$ is the number of those pairs $\{\gamma, \gamma'\}, \gamma' \in C' \setminus \{\gamma\}$, that are good in M due to the copy $(M)_{i,j}$ of the colour γ .

Let $\mathcal{M}(p,q,C)$ be the set of $p \times q$ matrices M with entries from C such that entries of any line of M are pairwise distinct, and all pairs in $\binom{C}{2}$ are good in M. Thus if $f : [1, p] \times [1, q] \to C$ is a proper complete vertex colouring of $K_p \square K_q$, then $M(f) \in \mathcal{M}(p,q,C).$

Conversely, if $M \in \mathcal{M}(p,q,C)$, it is immediate to see that the mapping $f_M:[1,p]\times[1,q]\to C$ determined by $f_M(i,j)=(M)_{i,j}$ is a proper complete vertex colouring of $K_p \square K_q$.

So, we have just proved

Proposition 2.1. If $p, q \in [1, \infty)$ and C is a finite set, then the following statements are equivalent:

- (1) there is a proper complete vertex colouring of $K_p \square K_q$ using as colours elements of C .
- (2) $\mathcal{M}(p,q,C) \neq \emptyset$.

The following straightforward proposition comes from [5].

Proposition 2.2. If $p, q \in [1, \infty)$, C, D are finite sets, $M \in \mathcal{M}(p,q,C)$, mappings $\rho:[1,p]\to [1,p], \sigma:[1,q]\to [1,q], \pi:C\to D$ are bijections, and $M_{\rho,\sigma}$, M_{π} are $p \times q$ matrices defined by $(M_{\rho,\sigma})_{i,j} = (M)_{\rho(i),\sigma(j)}$ and $(M_{\pi})_{i,j} = \pi((M)_{i,j})$, then $M_{\rho,\sigma} \in \mathcal{M}(p,q,C)$ and $M_{\pi} \in \mathcal{M}(p,q,D)$.

Let $M \in \mathcal{M}(p,q,C)$ and let $\gamma \in C$. For a colour $\gamma \in C$ and the colouring f_M from the proof of Proposition 2.1 denote $V_{\gamma} = f_M^{-1}(\gamma) \subseteq [1, p] \times [1, q]$, and let $N(V_{\gamma})$ be the neighbourhood of V_{γ} (the union of neighbourhoods of vertices in V_{γ}). The excess of γ is defined to be the maximum number $\operatorname{exc}(\gamma)$ of vertices in a set $S \subseteq N(V_\gamma)$ such that the partial vertex colouring of $K_6 \square K_7$, obtained by removing colours of S, is still complete concerning the colour class γ .

The *frequency* of the colour γ is the number of entries of M equal to γ . An *l*-colour (*l*+colour) is a colour of frequency l (at least l), and C_l (C_{l+1}) is the set of *l*-colours (*l*+colours). Further, for $k \in \{l, l+\}$ let $c_k = |C_k|$,

$$
\mathbb{R}(i) = \{(M)_{i,j} : j \in [1, q]\}, \ \mathbb{R}_k(i) = C_k \cap \mathbb{R}(i), \ \ r_k(i) = |\mathbb{R}_k(i)|, \ i \in [1, p],
$$

$$
\mathbb{C}(j) = \{(M)_{i,j} : i \in [1, p]\}, \ \mathbb{C}_k(j) = C_k \cap \mathbb{C}(j), \ c_k(j) = |\mathbb{C}_k(j), \ j \in [1, q].
$$

Finally, denote

$$
\mathbb{R}_2(i_1, i_2) = C_2 \cap \mathbb{R}(i_1) \cap \mathbb{R}(i_2), \quad r_2(i_1, i_2) = |\mathbb{R}_2(i_1, i_2)|, \quad i_1, i_2 \in [1, p], i_1 \neq i_2, \n\mathbb{C}_2(j_1, j_2) = C_2 \cap \mathbb{C}(j_1) \cap \mathbb{C}(j_2), \quad c_2(j_1, j_2) = |\mathbb{C}_2(j_1, j_2)|, \quad j_1, j_2 \in [1, q], j_1 \neq j_2.
$$

Considering a nonempty set $S \subseteq [1, p] \times [1, q]$ we say that a colour $\gamma \in C$ occupies a position in S (appears in S, has a copy in S or simply is in S) if there is $(i, j) \in S$ such that $(M)_{i,j} = \gamma$.

3. PROPERTIES OF A COUNTEREXAMPLE TO THEOREM 1.3

We prove Theorem 1.3 by the way of contradiction. It is well known that

 $achr(G) > achr(H)$

if H is an induced subgraph of a graph G . So, by Proposition 1.2,

$$
\operatorname{achr}(K_6 \square K_7) \ge \operatorname{achr}(K_6 \square K_6) = 18.
$$

Provided that Theorem 1.3 is false, by Theorem 1.1 and Proposition 2.1 there is a set C with $|C|=19$ and a matrix $M \in \mathcal{M}(6,7,C)$; henceforth the whole notation corresponds to this (hypothetical) matrix M .

Claim 3.1. If $\gamma \in C_l$, then $\text{exc}(\gamma) = -l^2 + 12l - 18$.

Proof. The vertex colouring f_M of $K_6 \square K_7$ is proper, hence

$$
|N(V_{\gamma})| = 7l + l(6 - l) - l = l(12 - l).
$$

Further, f_M is complete, and so each colour of $C \setminus \{\gamma\}$ appears on a vertex belonging to $N(V_\gamma)$. Therefore,

$$
\operatorname{exc}(\gamma) = l(12 - l) - (19 - 1) = -l^2 + 12l - 18. \qquad \qquad \square
$$

Claim 3.2. The following statements are true:

1. $c_1 = 0$, 2. if $l \in [7,\infty)$, then $c_l = 0$, 3. $c_2 \in [15, 18]$, 4. $c_{3+} \in [1,4],$ 5. $\Sigma = \sum_{i=3}^{6} ic_i \in [6, 12],$ 6. $c_{4+} \leq c_2 - 15$, 7. if $c_{4+} = 0$, then $c_{3+} = c_3 = 4$, 8. if $c_{4+} \geq 1$, then $c_{3+} \leq 3$, 9. $c_{3+} + c_{4+} \leq 4$, 10. if $c_{5+} \geq 1$, then $c_{3+} + c_{4+} \leq 3$.

Proof. 1. If $\gamma \in C_1$, then, by Claim 3.1, $\text{exc}(\gamma) = -7 < 0$, a contradiction.

2. If $\gamma \in C_l$ for some $l \in [7,\infty)$, then by the pigeonhole principle the colouring f_M is not proper, a contradiction.

3. By Claims 3.2.1, 3.2.2 we have

$$
c_2 + c_{3+} = \sum_{i=2}^{6} c_i = |C| = 19
$$

and

$$
\sum_{i=2}^{6} ic_i = |V(K_6 \square K_7)| = 42,
$$

hence

$$
2c_2 + 6(19 - c_2) = 2c_2 + 6c_{3+} \ge \sum_{i=2}^{6} ic_i \ge 2c_2 + 3c_{3+} = 2c_2 + 3(19 - c_2),
$$

which yields

$$
114 - 4c_2 \ge 42 \ge 57 - c_2 \quad \text{and} \quad 15 \le c_2 \le 18
$$

- 4. A consequence of Claim 3.2.3.
- 5. The assertion of Claim 3.2.3 leads to

$$
\sum_{i=3}^{6} ic_i = \sum_{i=2}^{6} ic_i - 2c_2 = 42 - 2c_2 \in [6, 12].
$$

6. We have

$$
3 \cdot 19 - c_2 + c_{4+} = 3(c_2 + c_3 + c_{4+}) - c_2 + c_{4+} \le \sum_{i=2}^{6} ic_i = 42
$$

and

$$
c_{4+} \le c_2 - 15.
$$

7. If $c_{4+} = 0$, then

$$
c_2 + c_3 = 19
$$
, $2c_2 + 3c_3 = 42$ and $c_{3+} = c_3 = 42 - 2 \cdot 19 = 4$

8. The assumption $c_{4+} \ge 1$ and $c_{3+} = 4$ would mean

$$
\Sigma \ge 3 \cdot 3 + 4 = 13 > 12,
$$

which contradicts Claim 3.2.5.

9. If $c_{4+} = 0$, then $c_{3+} + c_{4+} = c_{3+} \leq 4$. With $c_{4+} = 1$ we have, by Claim 3.2.6,

$$
1 = c_{4+} \le c_2 - 15
$$
, $c_2 \ge 16$, $c_3 = 19 - c_2 - c_{4+} \le 2$,
 $c_{3+} \le 3$ and $c_{3+} + c_{4+} \le 4$.

Finally, from $c_{4+} \geq 2$ it follows that

$$
2 \le c_{4+} \le c_2 - 15, \quad c_2 \ge 17,
$$

\n
$$
19 = c_2 + c_3 + c_{4+} \ge 17 + c_3 + 2 = 19 + c_3 \ge 19,
$$

\n
$$
c_2 = 17, \quad c_3 = 0, \quad c_{4+} = 2 = c_{3+} \quad \text{and} \quad c_{3+} + c_{4+} = 4
$$

10. We have

$$
2(19 - c_{5+}) + 5c_{5+} = 2(c_2 + c_3 + c_4) + 5(c_5 + c_6) \le \sum_{i=2}^{6} ic_i = 42,
$$

\n
$$
3c_{5+} \le 4 \quad \text{and} \quad c_3 + 2c_4 = 42 - 2(19 - c_5 - c_6) - 5c_5 - 6c_6 \le 4 - 3c_{5+},
$$

hence $c_{5+} \geq 1$ yields

$$
c_{5+} = 1
$$
, $c_3 + 2c_4 \le 1$, $c_{4+} = c_{5+} = 1$,
\n $c_{3+} = c_3 + c_{4+} = c_3 + 1$ and $c_{3+} + c_{4+} = c_3 + 1 + 1 \le 3$.

A set $D \subseteq C_2$ is of the type $(m_1^{a_1} \ldots m_k^{a_k}, n_1^{b_1} \ldots n_l^{b_l})$ if both (m_1, \ldots, m_k) , (n_1, \ldots, n_l) are decreasing sequences of integers from the interval [1, |D||, the number of rows of M containing m_i colours from D is $a_i \geq 1$ for each $i \in [1, k]$, the number of columns of M containing n_i colours from D is $b_i \geq 1$ for each $i \in [1, l]$, and

$$
\sum_{i=1}^{k} m_i a_i = 2|D| = \sum_{i=1}^{l} n_i b_i.
$$

Forthcoming Claims 3.3, 3.4, 3.6, 3.7, and 3.9 state that certain types of 2- and 3-element subsets of C_2 are impossible in a matrix M contradicting Theorem 1.3. The mentioned claims are proved by contradiction. When proving that M avoids a type T , we suppose that there is $D \subseteq C_2$, which is of the type T (without explicitly mentioning it), and we reach a contradiction with some of the properties following from the fact that $M \in \mathcal{M}(6, 7, C)$.

Claim 3.3. No set $\{\alpha, \beta\} \subseteq C_2$ is of the type $(1^4, 2^2)$.

Proof. Since we have at our disposal Proposition 2.2, we may suppose without loss of generality that $(M)_{1,1} = \alpha = (M)_{3,2}$ and $(M)_{2,1} = \beta = (M)_{4,2}$. We use (w) to express briefly that it is Proposition 2.2, which enables us to simplify our reasoning by restricting our attention to matrices with a special structure. With $A = \mathbb{C}(1) \cup \mathbb{C}(2)$ we have $|A| \leq 10$. If $\gamma \in C \setminus A$, then the fact that both pairs $\{\gamma, \alpha\}$ and $\{\gamma, \beta\}$ are good forces γ to occupy a position in $S_{\alpha} = \{1,3\} \times [3,7]$ and in $S_{\beta} = \{2,4\} \times [3,7]$ as well. So,

$$
|C \setminus A| \le 10 \quad \text{and} \quad |C \setminus A| = |C| - |A| \ge 9.
$$

By Claim $3.2.4$,

$$
|(C \setminus A) \cap C_2| = |C \setminus A| - |(C \setminus A) \cap C_{3+}| \ge 9 - c_{3+} \ge 5,
$$

hence there is $\delta \in (C \setminus A) \cap C_2$. Now, as δ is in both S_α and S_β , there is $(i,k) \in \{1,3\} \times \{2,4\}$ such that $\delta \in \mathbb{R}_2(i,k)$. If $(i,k) = (1,2)$, then (w) $(M)_{1,3} = \delta = (M)_{2,4}$ (see Figure 1).

If $|C \setminus A| = 10$, then all ten positions in both S_{α} , S_{β} are occupied by colours of $C \setminus A$, and all twelve bullet positions in Figure 1 are occupied by colours of $(C \setminus A) \setminus \{\delta\}$, which means that

 $\mathrm{exc}(\delta) \ge 12 - |(C \setminus A) \setminus {\delta}| = 12 - (10 - 1) = 3$

in contradiction to Claim 3.1.

If $|C \setminus A| = 9$, then $\mathbb{C}(1) \cap \mathbb{C}(2) = \{\alpha, \beta\}$. Let B be the set of four colours occupying a position in [5, 6] \times [1, 2]. Using $\text{exc}(\alpha) = \text{exc}(\beta) = 2$ we see that at most two positions in [1, 4] \times [3, 7] are occupied by a colour of B. Thus, if $\varepsilon \in B$ is not in [1, 4] \times [3, 7] (and there are at least two possibilities for such ε), then it must be in [5,6] \times [3,7], and so $\varepsilon \in C_2$ (the colouring f_M is proper). Then, however, the number of pairs $\{\zeta, \varepsilon\}$ with $\zeta \in (C \setminus A) \cap C_2$ that are good is at most four $(\zeta \text{ must share the column with})$ the copy of ε appearing in [5, 6] \times [3, 7]), while

$$
|(C \setminus A) \cap C_2| \ge |C \setminus A| - |C_{3+}| \ge 9 - 4 = 5,
$$

a contradiction.

Provided that $(i, k) \neq (1, 2)$, a contradiction can be reached in a similar manner. \Box

Claim 3.4. No set $\{\alpha, \beta\} \subseteq C_2$ is of the type $(2^11^2, 2^2)$.

Proof. Now (w) $(M)_{1,1} = \alpha = (M)_{2,2}$ and $(M)_{2,1} = \beta = (M)_{3,2}$. With $A = \mathbb{C}(1) \cup$ $\mathbb{C}(2) \cup \mathbb{R}(2)$ each colour $\gamma \in C \setminus A$ has a copy in $\{i\} \times [3,7], i = 1,3$ $(\{\gamma, \alpha\}$ and $\{\gamma, \beta\}$ are good). From $|A| \leq 15$ it follows that

$$
|C \setminus A| \ge 19 - 15 = 4,
$$

and then $C \setminus A \subseteq C_{3+}$: indeed, if $\delta \in (C \setminus A) \cap C_2$, then

$$
\mathrm{exc}(\delta) \geq |(C \setminus A) \setminus \{\delta\}| \geq 3,
$$

a contradiction. Thus $C_2 \subseteq A$, $c_2 \le 15$, hence, by Claims 3.2.3, 3.2.4, $c_2 = 15$, $c_3 = c_{3+} = 4$, $C \setminus A = C_{3+} = C_3$, each colour of $C_2 \setminus \{\alpha, \beta\}$ has exactly one copy in $([1,6] \times [1,2]) \cup (\{2\} \times [3,7])$, and (w) $\varepsilon = (M)_{1,2}$, $\zeta = (M)_{3,1}$ are (distinct) 2-colours.

First note that $\varepsilon, \zeta \notin \mathbb{R}_2(1,3)$, for otherwise

$$
\max(\operatorname{exc}(\varepsilon), \operatorname{exc}(\zeta)) \ge c_3 = 4.
$$

So, the second copies of ε, ζ are in $[4, 6] \times [3, 7]$, and the pair $\{\varepsilon, \zeta\}$ is good in the corresponding 3×5 submatrix of M.

If the pair $\{\varepsilon,\zeta\}$ is column-based, (w) $\varepsilon = (M)_{4,3}$ and $\zeta = (M)_{5,3}$, then, with a (2-) colour η appearing in $\{2\} \times [4, 7]$, both pairs $\{\eta, \varepsilon\}$ and $\{\eta, \zeta\}$ are good only if η occupies a position in $\{1,3,6\} \times \{3\}$, a contradiction.

If the pair $\{\varepsilon,\zeta\}$ is row-based, then $(w) \varepsilon = (M)_{4,3}$ and $\zeta = (M)_{4,4}$; consider six positions in [5, 6] \times [5, 7]. Since $r_3(1) = r_3(3) = 4 = c_3$, at most four of those positions are occupied by 3-colours and at least two of them by 2-colours. Let B be the set of 2-colours having a copy in $([5,6] \times [5,7]) \cup (\{2\} \times [5,7])$. If $\vartheta \in B$, then, having in mind that both pairs $\{\vartheta, \varepsilon\}$ and $\{\vartheta, \zeta\}$ are good, ϑ must have a copy in $\{(1,4), (3,3), (4,1), (4,2)\};$ this contradicts the inequality $|B| \geq 5$. \Box

Claim 3.5. If $j, l \in [1, 7], j \neq l$, then $c_2(j, l) \leq 2$.

Proof. The assumption $c_2(j,l) \geq 3$ would contradict Claim 3.3 or Claim 3.4. \Box

Claim 3.6. No set $\{\alpha, \beta\} \subseteq C_2$ is of the type $(2^2, 1^4)$.

Proof. Here (w) $(M)_{1,1} = \alpha = (M)_{2,3}$ and $(M)_{1,2} = \beta = (M)_{2,4}$. With $A = \mathbb{R}(1) \cup \mathbb{R}(2)$ we have $|A| \leq 12$, each colour of $C \setminus A$ is in both sets S_{α} = [3,6] \times {1,3}, S_{β} = [3,6] \times {2,4}, and 7 \leq |C \ A| \leq 8. As $|(C \setminus A) \cap C_2| \geq 3$, there is $(j, l) \in \{1, 3\} \times \{2, 4\}$ such that $\gamma \in (C \setminus A) \cap C_2(j, l)$. If $(j, l) = (1, 2)$, then (w) $(M)_{3,1} = \gamma = (M)_{4,2}$ (see Figure 2).

If $|C \setminus A| = 8$, then all eight positions in both sets S_{α} , S_{β} are occupied by colours of $C \setminus A$. Further, all ten bullet positions in Figure 2, which are positions of vertices in $(N(V_{\alpha}) \cup N(V_{\beta})) \cap N(V_{\gamma})$, are occupied by colours of $(C \setminus A) \setminus \{\gamma\}$, and so $\operatorname{exc}(\gamma) \ge 10 - (8 - 1) = 3$, a contradiction.

Suppose that $|C \setminus A| = 7$ (and $|A| = 12$). For $m \in \{2, 3+, 4+\}$ and $n \in [0, 2]$ let C_m^n be the set of colours in C_m having n copies in $[5,6] \times [5,7]$, and let $c_m^n = |C_m^n|$. If $\delta \in C_2^1 \cup C_3^2$, then, since the pairs $\{\delta, \alpha\}, \{\delta, \beta\}$ and $\{\delta, \gamma\}$ are good, δ must appear in $\{2\} \times [1,2]$, and so $c_2^1 + c_3^2 \le 2$; further, $c_2^2 = 0$. Using Claim 3.2.9 we obtain

$$
6 = c_2^1 + c_3^1 + c_{4+}^1 + 2c_3^2 + 2c_{4+}^2 \le c_2^1 + c_3^2 + \sum_{n=0}^2 (c_3^n + c_{4+}^n) + c_{4+}^2
$$

$$
\le c_2^1 + c_3^2 + c_3 + c_4 + c_4 \le 2 + 4 = 6,
$$
 (3.1)

which implies

$$
c_3^0 = c_{4+}^0 = c_{4+}^1 = 0,\t\t(3.2)
$$

$$
c_{4+} = c_{4+}^2,\tag{3.3}
$$

$$
c_2^1 + c_3^2 = 2,\t\t(3.4)
$$

 $c_{3+} + c_{4+} = 4$, and so, by Claim 3.2.10, $c_{5+} = 0$.

For $\delta \in {\alpha, \beta}$ choose a set $S_{\delta'} \subseteq S_{\delta}$ with $|S_{\delta'}| = 7$ occupied by seven distinct colours of $C \setminus A$, and let

$$
P = ([3,6] \times [1,4]) \setminus (S_{\alpha'} \cup S_{\beta'});
$$

then $|P|=2$. Since

$$
|N(V_{\gamma}) \cap ([3,6] \times [1,4])| = 10,
$$

we have

$$
2 = \text{exc}(\gamma) \ge 10 - (|P| + |(C \setminus A) \setminus {\gamma}| = 4 - |P| = 2,
$$

hence both positions in P are necessarily occupied by a colour of A , and all sets $S_{\alpha'}$, $S_{\beta'}$, P are unique. We express this property of γ by saying that γ is A-exact. Besides that, the two positions in P are occupied by two distinct colours of A, say λ and μ ; indeed, otherwise the colour of A, which occupies both positions in P, by (3.3), would be a 5+colour, a contradiction. Let $P = \{(i_{\lambda}, j_{\lambda}), (i_{\mu}, j_{\mu})\}$, where $\lambda = (M)_{i_{\lambda}, j_{\lambda}}$ and $\mu = (M)_{i_{\mu},j_{\mu}}$. The excess of both α, β is 2, therefore $(j_{\lambda}, j_{\mu}) \in \{1,3\} \times \{2,4\}$ (a colour occupying a position in P contributes to the excess of either α or β , and α , β are contributing to the excess of each other).

The above reasoning concerning γ can be repeated to prove that any colour in $(C \setminus A) \cap C_2$ is A-exact.

Suppose that $\varepsilon \in (C \setminus A) \cap C_2$; then ε is A-exact and $\varepsilon \in \mathbb{C}_2(j',l')$, where $(j',l') \in \{1,3\} \times \{2,4\}.$ Let $\{l_{\lambda}, l_{\mu}\} = [1,4] \setminus \{j_{\lambda}, j_{\mu}\}.$

Assume first that $i_{\lambda} = i_{\mu}$. By Claim 3.4,

$$
|(C \setminus A) \cap C_2(j_{\lambda}, j_{\mu})| \leq 2.
$$

If $(j',l') \neq (j_{\lambda},j_{\mu})$, then either $\varepsilon = (M)_{i_{\lambda},l_{\lambda}}$ or $\varepsilon = (M)_{i_{\lambda},l_{\mu}}$. The second possibility is $i_{\lambda} \neq i_{\mu}$. By Claim 3.4,

$$
|(C \setminus A) \cap C_2(l_\lambda, l_\mu)| \leq 2.
$$

On the other hand, if $(j', l') \neq (l_{\lambda}, l_{\mu})$, then either $\varepsilon = (M)_{i_{\lambda}, j_{\mu}}$ or $\varepsilon = (M)_{i_{\mu}, j_{\lambda}}$.

In both cases

$$
|(C \setminus A) \cap C_2| \le 2 + 2 = 4
$$

and

$$
|(C \setminus A) \cap C_{3+}| \ge 7 - 4 = 3. \tag{3.5}
$$

From (3.1) and (3.3) we obtain

$$
(C \setminus A) \cap C_{3+} \subseteq C_3^1 \cup C_{4+}^2,
$$

 \Box

hence $c_3^1 + c_{4+}^2 \geq 3$. Let us show the following:

No 3+colour occupies a position in [3, 4] \times [5, 7], and $c_2^1 \geq 1$. (3.6)

Because of (3.2) and (3.3) we know that colours of $(C \setminus A) \cap C_{3+}$ appear only in $([3,6] \times [1,4]) \cup ([5,6] \times [5,7])$. If $c_{4+} \geq 1$, then, by Claim 3.2.8,

$$
3 \ge c_{3+} \ge c_3^1 + c_{4+}^2 \ge 3, \quad c_{3+} = c_3^1 + c_{4+}^2 = 3,
$$

$$
C_{3+} = C_3^1 \cup C_{4+}^2 = (C \setminus A) \cap C_{3+},
$$

 $c_3^2 = 0, c_2^1 = 2$ (see (3.4)), and so (3.6) is true.

If $c_{4+} = 0$, then from (3.1), (3.4) and Claim 3.2.4 it follows that

$$
c_3^1 + c_3^2 = 4 = c_{3+},
$$
 $C_{3+} = C_3^1 \cup C_3^2 = ((C \setminus A) \cap C_{3+}) \cup C_3^2$

and, by (3.5), $c_3^1 \geq 3$; since a colour of C_3^2 is only in $({2} \times [1,2]) \cup ([5,6] \times [5,7]),$ $c_3^2 \le 1$ and $c_2^1 \ge 1$, (3.6) is true again.

Now, by (3.6), six positions in [3, 4] \times [5, 7] are occupied by six distinct 2-colours belonging to $A \setminus \{\lambda, \mu\}$, and there is a colour $\zeta \in C_2^1$, (w) $\zeta = (M)_{5,5}$, see Figure 3.

If a 2-colour η appears in a bullet position, then, since the pair $\{\eta, \zeta\}$ is good, the second copy of η must occupy a circle position. In such a case, however, it is easy to check that there is a set $\{\vartheta,\iota\} \subseteq A \cap C_2$ of 2-colours occupying two bullet positions and two circle positions, which contradicts either Claim 3.3 or Claim 3.4.

The case $(j, l) \neq (1, 2)$ can be treated similarly.

Claim 3.7. No set $\{\alpha, \beta\} \subseteq C_2$ is of the type $(2^2, 2^11^2)$.

Proof. Let (w) $(M)_{1,1} = \alpha = (M)_{2,2}$ and $(M)_{1,2} = \beta = (M)_{2,3}$. First of all, we have $\mathbb{R}_2(1,2) = \{\alpha,\beta\}.$ Indeed, if (w) $\gamma \in \mathbb{R}(1,2) \setminus \{\alpha,\beta\}$, then, by Claim 3.6, necessarily $(M)_{1,3} = \gamma = (M)_{2,1}$. Each colour $\delta \in C \setminus \mathbb{R}_2(1,2)$ occupies at least two positions in $[3,6]\times[1,3]$ (all pairs $\{\delta,\alpha\},\{\delta,\beta\},\{\delta,\gamma\}$) are good), hence $|C|\leq 11+\lfloor\frac{4\cdot3}{2}\rfloor=17<19$, a contradiction.

With $A = \mathbb{R}(1) \cup \mathbb{R}(2) \cup \mathbb{C}(2)$ any colour $\gamma \in C \setminus A$ occupies a position in $[3,6] \times \{1\}$ as well as in $[3,6] \times \{3\}$, hence $|C \setminus A| \leq 4$, $|A| \leq 16$, $|C \setminus A| = 19 - |A| \ge 3$ and $|A| \ge 15$.

Assume first that $|A| = 15$ and $|C \setminus A| = 4$, which yields $C \setminus A \subseteq C_{3+}$ (a 2-colour $\gamma \in C \setminus A$ would satisfy $exc(\gamma) \geq 3$), $c_{3+} = c_3 = 4$ and $A = C_2$. For colours $\gamma = (M)_{1,3}$ and $\delta = (M)_{2,1}$ their second copies appear in

 $[3,6] \times ({2} \cup [4,7])$, and the pair $\{\gamma,\delta\}$ is good in the corresponding 4×5 submatrix of M. However, at most one of γ , δ is in [3, 6] \times {2}, hence $\{\gamma, \delta\}$ is good in the submatrix of M corresponding to $[3,6] \times [4,7]$.

If the pair $\{\gamma, \delta\}$ is column-based, then (w) $\gamma = (M)_{3,4}$ and $\delta = (M)_{4,4}$, at most one of colours in $[5,6] \times \{2\}$ belongs to $\mathbb{R}(1) \cup \mathbb{R}(2)$, hence there is a 2-colour ε and $i \in [5,6]$ such that $\varepsilon = (M)_{i,2} = (M)_{11-i,4}$ (so that both pairs $\{\varepsilon,\gamma\},\{\varepsilon,\delta\}$ are good). For every colour $\zeta \notin \mathbb{C}(2) \cup \{(M)_{i,4}\}\$ occupying a position in $[1,2] \times [5,7]$ (the number of such colours is at least 4) there is $\eta \in \{\gamma, \delta, \varepsilon\}$ such that the pair $\{\eta, \zeta\}$ is not good, a contradiction.

If the pair $\{\gamma,\delta\}$ is row-based, (w) $\gamma = (M)_{3,4}$ and $\delta = (M)_{3,5}$. If a colour ε occupies a position in [4,6] \times {2} and does not belong to $\mathbb{R}(1) \cup \mathbb{R}(2)$ (there are at least two such colours), then it must appear in $\{3\} \times [6,7]$ (pairs $\{\varepsilon,\gamma\}$) and $\{\varepsilon,\delta\}$ are good), (w) $(M)_{4,2} = \varepsilon = (M)_{3,6}$ and $(M)_{5,2} = \zeta = (M)_{3,7}$. If a 2-colour η is in $\{6\} \times [4, 7]$, then $\eta = (M)_{3,2}$ (all pairs $\{\eta, \vartheta\}$ with $\vartheta \in \{\gamma, \delta, \varepsilon, \zeta\}$ are good), $r_3(6) \geq 2 + 3 = 5 > c_3$, and so the colouring f_M is not proper, a contradiction.

From now on $|A| = 16$ and $|C \setminus A| = 3$. Suppose first that $C \setminus A \subseteq C_{3+}$. From $c_{3+} \leq 4$ we obtain $|A \cap C_{3+}| \leq 1$.

If $(\mathbb{R}(1) \cup \mathbb{R}(2)) \cap C_{3+} = \emptyset$, then (w) $\gamma = (M)_{3,2}$, $\delta = (M)_{4,2}$, $\varepsilon = (M)_{5,2}$ are 2-colours, and their second copies appear in $[3,6] \times [4,7]$. Let

$$
J = \{ j \in [4, 7] : \mathbb{C}(j) \cap \{ \gamma, \delta, \varepsilon \} \neq \emptyset \};
$$

by Claim 3.5 we know that $2 \leq |J| \leq 3$. If

$$
(i,j) \in S = \{(1,3), (2,1)\} \cup ([1,2] \times ([4,7] \setminus J)),
$$

then $g(i, j, \{\gamma, \delta, \varepsilon\}) = 0$; note that $|S| = 10 - 2|J|$. On the other hand, the number of pairs $(i, j) \in [3, 6] \times [4, 7]$, satisfying $g(i, j, \{ \gamma, \delta, \varepsilon \}) = 3$, is less than |S| (at most 3 if $|J| = 3$ and at most 4 if $|J| = 2$. Thus, there is a 2-colour ζ in S and $\eta \in {\gamma, \delta, \epsilon}$ such that the pair $\{\zeta,\eta\}$ is not good.

If $|(\mathbb{R}(1) \cup \mathbb{R}(2)) \cap C_{3+}| = 1$, then $c_3 = c_{3+} = 4$ and $c_2(2) = 6$.

Suppose first that both $\gamma = (M)_{1,3}$ and $\delta = (M)_{2,1}$ are 2-colours. The second copies of γ , δ are then in [3, 6] \times [4, 7], for if not,

$$
\max(\text{exc}(\gamma), \text{exc}(\delta)) \ge 1 + |C \setminus A| = 4.
$$

If the pair $\{\gamma,\delta\}$ is column-based, then (w) $\gamma = (M)_{3,4}$ and $\delta = (M)_{4,4}$ so that $(M)_{5,2} = \varepsilon = (M)_{6,4}$ and $(M)_{6,2} = \zeta = (M)_{5,4}$ (all pairs $\{\varepsilon, \gamma\}, \{\varepsilon, \delta\}, \{\zeta, \gamma\},\zeta$ $\{\zeta,\delta\}$ are good). For $(i,j) \in [1,2] \times [5,7]$ then $g(i,j,\{\gamma,\delta,\varepsilon,\zeta\}) = 1$, and at least three positions in $|1,2| \times |5,7|$ are occupied by a 2-colour that is in $|3,6| \times |5,7|$; on the other hand, for $(i, j) \in [3, 6] \times [5, 7]$ we have $g(i, j, \{ \gamma, \delta, \varepsilon, \zeta \}) \leq 2$, a contradiction.

If the pair $\{\gamma, \delta\}$ is row-based, then (w) $\gamma = (M)_{3,4}$ and $\delta = (M)_{3,5}$. Then $g(i, j, \{\gamma, \delta\}) = 0$ for $(i, j) \in [4, 6] \times \{2\}$ and $g(i, j, \{\gamma, \delta\}) \leq 1$ for $(i, j) \in [4, 6] \times [4, 7]$; this leads to a contradiction, since at least one of colours in $[4,6] \times \{2\}$ has its second copy in $[4,6] \times [4,7]$.

So, one of γ , δ is a 2-colour and the other a 3-colour, (w) $\gamma \in C_2$ and $\delta \in C_3$. As above, the second copy of γ appears in [3, 6] \times [4, 7], (w) $\gamma = (M)_{3,4}$. All colours of the set $B = {\varepsilon, \zeta, \eta, \vartheta}$, where $\varepsilon = (M)_{3,2}, \zeta = (M)_{4,2}, \eta = (M)_{5,2}$ and $\vartheta = (M)_{6,2}$, are 2-colours. By Claim 3.3, the second copy of a colour $\iota \in B$ does not appear in $\mathbb{C}(1) \cup \mathbb{C}(3)$, hence is in [3, 6] \times [4, 7] and, additionally, in $\mathbb{R}(3) \cup \mathbb{C}(4)$, provided that $\iota \neq \varepsilon$ (the pair $\{\iota, \gamma\}$ is good). Then $|B \cap \mathbb{R}(3)| \leq 3$, since otherwise $\operatorname{exc}(\varepsilon) \geq 3$. So, by Claim 3.5, with $B' = \{\zeta, \eta, \vartheta\}$ we have $1 \leq |B' \cap \mathbb{C}(4)| \leq 2$.

If $|B' \cap \mathbb{C}(4)| = 2$, then (w) $\eta = (M)_{4,4}$, $\zeta = (M)_{4,5}$ (here we use Claim 3.4) and $\vartheta = (M)_{3,5}$. For both $l \in [6,7]$ then $g(2, l, B' \cup {\gamma}) = 0$. This leads to a contradiction, since $(M)_{2,6}$, $(M)_{2,7}$ are 2-colours, and $g(i, j, B' \cup {\gamma}) = 4$ only if $(i, j) = (6, 4)$.

If $|B' \cap \mathbb{C}(4)| = 1$, then (w) $\zeta = (M)_{5,4}, \eta = (M)_{3,5}$ and $\vartheta = (M)_{3,6}$ so that $g(2,7,B' \cup {\gamma}) = 0$. A contradiction follows from the fact that $g(i, j, B' \cup {\gamma}) \leq 3$ for each (i, j) .

Now suppose that $(C \setminus A) \cap C_2 \neq \emptyset$, $(w) \gamma = (M)_{3,1} = (M)_{4,3} \in (C \setminus A) \cap C_2$. For $m \in \{2, 3, 3+\}, n \in [1, 2]$ let C_m^n be the set of colours in C_m having n copies in $[5,6] \times [4,7]$ and $c_m^n = |C_m^n|$; then

$$
c_2^1 + c_{3+}^1 + 2c_{3+}^2 = 8.\t\t(3.7)
$$

Since $g(i, j, {\alpha, \beta, \gamma}) = 0$ for $(i, j) \in [5, 6] \times [4, 7]$ and $g(i, j, {\alpha, \beta, \gamma}) = 3$ if and only if $(i, j) \in S = \{(1, 3), (2, 1), (3, 2), (4, 2)\}\$, we have

$$
c_2^1 + c_3^2 \le 4. \tag{3.8}
$$

Let us first show that $c_2^1 \leq 3$. Indeed, if $c_2^1 = 4$, then all pairs $\{\delta, \varepsilon\} \in \binom{C_2^1}{2}$ are good only if there is $i \in [5,6]$ such that $C_2^1 \subseteq \mathbb{R}(i)$. This immediately implies $c_{3+}^2 = 0$ and, by Claim 3.2.4 and (3.7), $4 \ge c_{3+} \ge c_{3+}^1 = 4$, $c_{3+} = 4$ and $C_{3+} \subseteq \mathbb{R}(11-i)$. Then $\delta = (M)_{11-i,2} \in C_2$, the second copy of δ is in [3, 4] \times [4, 7] (by Claim 3.3), hence at least one of pairs $\{\delta, \varepsilon\}$ with $\varepsilon \in C_2^1$ is not good, a contradiction.

Further, we prove that

$$
c_{3+}^1 + c_{3+}^2 = c_{3+},\t\t(3.9)
$$

which is equivalent to

$$
C_{3+}^1 \cup C_{3+}^2 = C_{3+}.\tag{3.10}
$$

If $c_{4+} \geq 1$, then Claim 3.2.8 yields $c_{3+} \leq 3$. Because of (3.7) we obtain

$$
2(c_{3+}^1 + c_{3+}^2) = 8 + c_{3+}^1 - c_2^1,
$$

\n
$$
c_{3+}^1 + c_{3+}^2 = \frac{1}{2}(8 + c_{3+}^1 - c_2^1) \ge \frac{1}{2}(8 - 3) = \frac{5}{2},
$$

\n
$$
3 \ge c_{3+} \ge c_{3+}^1 + c_{3+}^2 \ge 3,
$$

and so (3.9) is true under the assumption $c_{4+} \ge 1$ (implying $c_{3+} = 3$).

On the other hand, $c_{4+} = 0$ implies $c_{3+} = c_3 = 4$ (Claim 3.2.7). In this case, using (3.7) and (3.8) , we see that

$$
8 = (c_2^1 + c_{3+}^2) + (c_{3+}^1 + c_{3+}^2) \le 4 + c_{3+} = 8,
$$

hence

$$
c_{3+} = 4 = c_2^1 + c_{3+}^2 = c_{3+}^1 + c_{3+}^2,
$$

and (3.9) holds again.

Note that now necessarily

$$
|(C \setminus A) \cap C_2| = 1.
$$

Indeed, $|(C \setminus A) \cap C_2| = 3$ is impossible by Claim 3.5, since in such a case

$$
c_2(1,3) \ge |(C \setminus A) \cap C_2| = 3.
$$

Moreover, by Claims 3.3 and 3.4, the assumption $|(C \setminus A) \cap C_2| = 2$ would mean that for the unique colour $\delta \in (C \setminus A) \cap C_{3+}$ there is $i \in [5, 6]$ such that $(M)_{i,1} = \delta = (M)_{11-i,3}$; however, according to (3.10), δ has an exemplar in [5, 6] \times [4, 7], and so the colouring f_M is not proper, a contradiction.

Thus

$$
|(C \setminus A) \cap C_{3+}| = 2. \tag{3.11}
$$

Because of a reasoning analogous to that above we see that each colour of $(C \setminus A) \cap C_{3+}$ occupies exactly one position in $[5,6] \times \{1,3\},\$

$$
(C \setminus A) \cap C_{3+} = C_{3+}^1,\tag{3.12}
$$

and then, using (3.10) ,

$$
C_{3+} \subseteq \mathbb{R}(5) \cap \mathbb{R}(6). \tag{3.13}
$$

Now if $c_{4+} \geq 1$ (and, consequently, $c_{3+} = 3$, which we have seen already), then, by (3.9), (3.11) and (3.12), $c_{3+}^1 = 2$ and $c_{3+}^2 = 1$; since $c_2^1 \leq 3$, in such a case $c_2^1 + c_{3+}^1 + 2c_{3+}^2 \le 7$ in contradiction with (3.7) .

Therefore, in the rest of the proof of Claim 3.7 we work with $c_{4+} = 0$, $c_{3+} = 4$, $c_{3+}^1 = 2, c_3^2 = c_{3+}^2 = 2$ and $c_2^1 = 2$, see (3.7), (3.9), (3.11), (3.12). Moreover, all positions in S are occupied by colours of $C_2^1 \cup C_3^2$. If $\delta = (M)_{i,j} \in C_2^1$ with $(i,j) \in \{(1,3), (2,1)\},$ then, because of (3.11) , (3.12) and (3.13) ,

$$
\operatorname{exc}(\delta) \ge 1 + |(C \setminus A) \cap C_{3+}| = 1 + c_{3+}^1 = 3,
$$

a contradiction.

Thus $\{(M)_{1,3}, (M)_{2,1}\}\subseteq C_{3+}^2$, and for a 2-colour ε occupying a position in $[5,6] \times \{1,3\}$ (there are two such colours), by (3.13) we have $\operatorname{exc}(\varepsilon) \ge c_{3+} - 1 = 3$, a contradiction again. \Box

Claim 3.8. If $i, k \in [1, 6]$, $i \neq k$, then $r_2(i, k) < 2$.

Proof. The assumption $r_2(i,k) \geq 3$ would be in contradiction with Claim 3.6 or Claim 3.7. \Box **Claim 3.9.** No set $\{\alpha, \beta, \gamma\} \subseteq C_2$ is of the type $(3^12^11^1, 3^12^11^1)$.

Proof. Having in mind Claim 3.4 (or else Claim 3.7), assume (w) $(M)_{1,1} = \alpha = (M)_{2,2}$, $(M)_{1,2} = \beta = (M)_{2,1}$ and $(M)_{1,3} = \gamma = (M)_{3,1}$. Let $A¹$ be the set of colours occupying a position in

$$
\{1\} \times [4,7]) \cup ([4,6] \times \{1\}) \cup \{(2,3), (3,2)\}
$$

 $Aⁿ$ the set of colours in

$$
(\{n\} \times [4,7]) \cup ([4,6] \times \{n\}) \text{ for } n = 2,3,
$$

 $A_m^n = C_m \cap A^n$ and $a_m^n = |A_m^n|$ for $m \in \{2, 3+\}, n \in [1, 3]$. Then

$$
A^1| = a_2^1 + a_{3+}^1 = 9,\tag{3.14}
$$

$$
|A^2| = a_2^2 + a_{3+}^2 = 7,\tag{3.15}
$$

$$
A_1 \cap A_2 = \emptyset, \tag{3.16}
$$

since otherwise $\mathrm{exc}(\alpha) \geq 3$. Moreover, $|A^3| \leq 7$ and $A^2 \subseteq A^3$ (each pair $\{\gamma, \eta\}$ with $\eta \in A_2$ is good), hence, by (3.15),

$$
A_2 = A_3. \tag{3.17}
$$

Let us show that distinct colours $\delta = (M)_{2,3}$, $\varepsilon = (M)_{3,2}$ (a consequence of (3.14)) satisfy

$$
\{\delta, \varepsilon\} \subseteq C_{3+}.\tag{3.18}
$$

Indeed, if $\eta = (M)_{i,5-i} \in {\delta, \varepsilon} \cap C_2$ for some $i \in [2,3]$ and (w) $\eta = (M)_{4,4}$, then all colours appearing in

$$
(\{i\} \times [4,7]) \cup ([4,6] \times \{5-i\}) \cup \{(5-i,4), (4,i)\}
$$

belong to $A^2 \setminus \{\eta\}$, hence, by (3.15) and (3.17),

$$
\mathrm{exc}(\eta) \ge 9 - (7 - 1) = 3,
$$

a contradiction.

Further, with $\zeta = (M)_{3,3}$ we have

$$
\zeta \in C_{3+} \cap A^1. \tag{3.19}
$$

To see it realise first that, since the pair $\{\zeta,\alpha\}$ is good and f_M is proper, we get $\zeta \notin A^2 \cup \{\delta, \varepsilon\}$ and $\zeta \in A^1$. Moreover, $\zeta \in C_{3+}$, because the assumption $\zeta \in \mathbb{R}_2(1)$ $(\zeta \in \mathbb{C}_2(1))$ contradicts Claim 3.7 (Claim 3.4, respectively).

By (3.14) , (3.15) and Claim 3.2.4, we have

$$
a_2^1 + a_2^2 \ge (9 + 7) - c_{3+} \ge 12. \tag{3.20}
$$

Further, by (3.14) , (3.15) and (3.18) – (3.20) ,

$$
5 \le a_2^1 \le 6,\tag{3.21}
$$

$$
6 \le a_2^2 \le 7. \tag{3.22}
$$

Consider a colour $\eta \in A_2^1 \cap \mathbb{R}(1)$ (from (3.21) we see that there are at least two such colours), (w) $\eta = (M)_{1,j} = (M)_{4,l}$. Then from

$$
g(1, j, A_2^2) \le g(1, j, A^2) = 2
$$
 and $g(4, l, A_2^2) \le g(4, l, A^2) \le 4$

it follows that $a_2^2 \leq 2 + 4 = 6$, hence, by (3.15), (3.21), (3.22), $a_2^1 = a_2^2 = 6$ and $a_{3+}^2 = 1$.

Suppose first $\zeta \in \mathbb{C}(1)$ so that all positions in $\{1\} \times [4, 7]$ are occupied by colours of A_2^1 . If $\eta = (M)_{1,j}, j \in [4,7]$, then proceeding similarly as above we find that both positions in $[2,3] \times \{j\}$ are occupied by colours of A_2^2 . Thus $\mathbb{R}_2(2,3)$ consists of at least two colours of A_2^2 . By Claim 3.8 we obtain $r_2(2,3) = 2$, (w) $(M)_{2,4} = \vartheta = (M)_{3,5}$ and $(M)_{2,5} = \iota = (M)_{3,4}$. Now $\kappa = (M)_{1,6}$ satisfies $\kappa \in \mathbb{C}(4) \cup \mathbb{C}(5)$ (the pair $\{\kappa, \vartheta\}$ is good) and, analogously, $\lambda = (M)_{1,7} \in \mathbb{C}(4) \cup \mathbb{C}(5)$. By Claim 3.6, the copies of κ, λ that are in $[4,6] \times [4,5]$ do not share a row, (w) one of them is in $\mathbb{R}(4)$ and the other in $\mathbb{R}(5)$. Then, however, reasoning similarly as above again, all positions in $[4,5] \times [2,3]$ are occupied by colours of A_2^2 . Consequently, the unique colour of A_{3+}^2 is $(M)_{6,2} = (M)_{6,3}$, and f_M is not proper.

If $\zeta \in \mathbb{R}(1)$, (w) $\zeta = (M)_{1,7}$, then all positions in

$$
(\{1\} \times [4,6]) \cup ([4,6] \times \{1\})
$$

are occupied by colours of A_2^1 , which implies that all positions in

$$
([2,3] \times [4,6]) \cup ([4,6] \times [2,3])
$$

are occupied by colours of A_2^2 . So, the unique colour of A_{3+}^2 is $(M)_{2,7} = (M)_{3,7}$, a contradiction. \Box

4. FINAL ANALYSIS

We are now ready to do the final analysis for proving Theorem 1.3. Suppose (w) that $r_2(1) \geq r_2(i)$ for $i \in [2, 6]$, which, by Claim 3.2.3, implies

$$
7 \ge r_2(1) \ge \left\lceil \frac{2c_2}{6} \right\rceil \ge \left\lceil \frac{30}{6} \right\rceil = 5. \tag{4.1}
$$

Given $r_2(1)$ we assume (w) that the sequence $S = (r_2(1, i))_{i=2}^6$ is nonincreasing. Since $r_2(1) \in [5, 7]$, we have $r_2(1, 2) \ge \lceil \frac{r_2(1)}{5} \rceil \ge 1$, $r_2(1, 6) \le \lfloor \frac{r_2(1)}{5} \rfloor = 1$, and Claim 3.8 yields $r_2(1,2) \leq 2$. We suppose (w) that

$$
j \in [1, r_2(1)] \Rightarrow (M)_{1,j} \in C_2
$$
,

and, more precisely.

$$
(M)_{1,1} = \alpha, \ (M)_{1,2} = \beta, \ (M)_{1,3} = \gamma, \ (M)_{1,4} = \delta, \ (M)_{1,5} = \varepsilon,
$$

$$
r_2(1) \ge 6 \Rightarrow (M)_{1,6} = \zeta, \quad r_2(1) = 7 \Rightarrow (M)_{1,7} = \eta.
$$

Let p be the smallest integer in [2,6] such that $r_2(1, i) \leq 1$ for every $i \in [p, 6]$; p is correctly defined since $r_2(1,6) \leq 1$. Then

$$
r_2(1, i) = 1 \Leftrightarrow i \in [p, r_2(1) + 3 - p],
$$

and, counting the number of positions in [2, 6] \times [1, 7] occupied by colours of $\mathbb{R}_2(1)$, we obtain

$$
2(p-2) \le r_2(1) \le 2(p-2) + (7-p),
$$

which yields

$$
r_2(1) - 3 \le p \le \left\lfloor \frac{r_2(1) + 4}{2} \right\rfloor \le 5. \tag{4.2}
$$

Moreover, because of Claims 3.6 and 3.7 we have

$$
p \ge 3 \Rightarrow ((M)_{2,1} = \beta \land (M)_{2,2} = \alpha),
$$

\n
$$
p \ge 4 \Rightarrow ((M)_{3,3} = \delta \land (M)_{3,4} = \gamma),
$$

\n
$$
p = 5 \Rightarrow ((M)_{4,5} = \zeta \land (M)_{4,6} = \varepsilon).
$$

Let $q_i = |\mathbb{R}_2(1) \cap \mathbb{C}(j)|$ for $j \in [1, 7]$. By Claim 3.9 we know that a 2-colour μ , which occupies a position in $\{1\} \times [2p-3, r_2(1)]$, satisfies $\mu \notin \mathbb{C}(j)$ for every $j \in [1, 2p-4]$, hence $q_i = 2$ for any $j \in [1, 2p-4]$, and

$$
\sum_{j=2p-3}^{7} q_j = 2[r_2(1) - (2p - 4)] = 2r_2(1) + 8 - 4p; \tag{4.3}
$$

further,

$$
j \in [2p-3, 7] \Rightarrow q_j \le 3,\tag{4.4}
$$

since with $q_j \geq 4$ and $\mu \in \mathbb{R}_2(1) \cap \mathbb{C}(j)$ for some $j \in [2p-3, 7]$ we have $\operatorname{exc}(\mu) \geq$ $q_j - 1 \geq 3$. Notice also that

$$
j \in [2p - 3, r_2(1)] \Rightarrow 1 \le q_j \le \min(3, r_2(1) + 4 - 2p),\tag{4.5}
$$

because 2-colours occupying a position in $[1,6] \times \{j\}$ are distinct from $2p - 4$ (2-)colours appearing in $\{1\} \times [1, 2p - 4]$. Moreover, we assume (w) that the sequence $(q_j)_{j=2p-3}^{r_2(1)}$ is nonincreasing, and that, if $(r_2(1), p) = (5, 2)$, the sequence $(q_1, q_2, q_3, q_4, q_5)$ is nonincreasing.

For every pair $(r_2(1), p)$ obeying (4.1) and (4.2), we analyse the set $\mathcal{Q}(r_2(1), p)$ of sequences $(q_j)_{j=2p-3}^7$ satisfying all restrictions (4.3)–(4.5). More precisely, we show that the assumption that M is characterised by an arbitrary sequence $Q \in \mathcal{Q}(r_2(1), p)$ leads to a contradiction, mostly because of $\Sigma \geq 13$ (a contradiction to Claim 3.2.10) or the existence of a line of M containing at least five copies of 3+colours (by Claim 3.2.4 then the colouring f_M is not proper).

The structure of the sets $\mathcal{Q}(r_2(1),p)$ with $(r_2(1),p) \neq (5,2)$ follows:

$$
Q(7,5) = \emptyset,
$$

\n
$$
Q(7,4) = \{(3,2,1), (2,2,2)\},
$$

\n
$$
Q(6,5) = \{(0)\},
$$

\n
$$
Q(6,4) = \{(2,2,0), (2,1,1), (1,1,2)\},
$$

\n
$$
Q(6,3) = \{(3,3,1,1,0), (3,2,2,1,0), (3,2,1,1,1), (3,1,1,1,2), (2,2,2,2,0),
$$

\n
$$
(2,2,2,1,1), (2,2,1,1,2), (2,1,1,1,3)\},
$$

\n
$$
Q(5,4) = \{(1,1,0)\},
$$

\n
$$
Q(5,3) = \{(3,2,1,0,0), (3,1,1,1,0), (2,2,2,0,0), (2,2,1,1,0), (2,1,1,2,0),
$$

\n
$$
(2,1,1,1,1), (1,1,1,3,0), (1,1,1,2,1)\}.
$$

As we shall see later, it is not necessary to know the structure of $Q(5,2)$ explicitly.

Our analysis is organised according to the following rules: All *visible* colours in M (those represented by Greek alphabet letters) are 2-colours, and both copies of a visible colour are present in M . Asterisk entries in M represent 3+colours. Some asterisk entries appear in M by definition, e.g., each asterisk entry in the first row of M occupies a position in $\{1\} \times [r_2(1) + 1, 7]$. Another reason why an asterisk entry appears in M is that, if the corresponding position is occupied by a 2-colour λ , then putting another copy of λ to a *free* position (i.e., one that is not occupied by a visible colour) in any proper way (so that the resulting partial vertex colouring f' of $K_6 \square K_7$ is proper) leads to a situation, in which no continuation of f' to a proper complete vertex colouring of $K_6 \square K_7$ is possible, because at least one pair $\{\lambda, \mu\}$, where μ is a visible colour, is not good.

To simplify the description of matrices appearing in our analysis we frequently use the notation " $Q = Q$, Figure xy:" or " $Q = Q$, (w) Figure xy:", where $Q \in \mathcal{Q}((r_2(1), p))$. It means that the situation, in which M is characterised by the sequence Q , is analysed in Figure xy (and possibly Proposition 2.2 is involved).

If $Q = (3,2,1)$, then (w) $(M)_{4,5} = \zeta$, $(M)_{5,5} = \eta$ and $(M)_{6,6} = \varepsilon$, hence the set $\{\varepsilon,\zeta\}$ is of the type $(2^11^2,2^2)$, which contradicts Claim 3.4.

In the case $Q = (2,2,2)$ we are (w) in the situation of Figure 4. If a 2-colour μ occupies a position in $\{k\} \times [2l-1,2l]$ for some $k \in [4,6]$ and $l \in [1,2],$ then $\mu = (M)_{4-l,h(k)},$ where $h(k) = \frac{1}{2}(3k^2 - 31k + 90),$ and $\nu \in C_{3+}$ for each colour ν occupying a position in $([4,6] \setminus \{k\}) \times [5-2l, 6-2l]$ (with $\nu \in C_2$ the pair $\{\mu, \nu\}$ is not good). As a consequence, at least nine positions in $[4,6] \times [1,4]$ are occupied by 3+colours. Besides that, if $\mu = (M)_{i,j} \in C_2$ with $(i, j) \in \{(2, 3), (2, 4), (3, 1), (3, 2)\}\$, the second copy of μ must occupy one of the positions $(4, 7), (5, 5), (6, 6)$. Altogether we have

$$
\Sigma \ge 3 + 9 + 1 = 13.
$$

 $Q = (0)$, Figure 5: Because of

$$
c_2(7) \ge 6 - c_{3+} \ge 2
$$

we suppose (w) $\eta = (M)_{2,7} \in C_2$ so that η is in $\{(3,5), (3,6), (4,3), (4,4)\}.$

Under the assumption $\eta \in \mathbb{R}(3)$ we have (w) $\eta = (3,5)$. Let C'_2 be the set of 2-colours occupying a position in $[5,6] \times [1,6]$; the inequality $c_{3+} \leq 4$ implies $|C'_2| \geq 6$. If $\mu \in C'_2$, then from the fact that each pair $\{\mu, \nu\}$ with $\nu \in C''_2 = \{\alpha, \beta, \gamma, \delta, \eta\}$ is good one easily gets that the second copy of μ occupies a position in [2,3] \times [1,6]. As $g(4, 7, C''_2) = 0$ and $g(i, j, C''_2) \le 5$ provided that $(i, j) \in [2, 3] \times [1, 6]$ is a dot position, we obtain $\omega = (M)_{4,7} \in C_{3+}$ (notice that $\omega \notin C'_2$), hence $(M)_{3,7} \in C_2$. Then $\mathrm{exc}(\eta) \geq 4$, since we can uncolour vertices (i, j) with $i \in [2, 3]$ and $(M)_{i,j} \in C_{3+}$ (here we use $r_{3+}(i) \ge 1$ and $C_{3+} \subseteq \mathbb{C}(7)$, as well as the vertices $(5,5)$, $(6,5)$ (independently from the frequencies of $(M)_{5,5}$ and $(M)_{6,5}$) without affecting the completeness of the colour class η in the resulting partial colouring.

In the case $\eta \in \mathbb{R}(4)$ we obtain a contradiction similarly as above.

The assumption $Q = (2, 2, 0)$ means that (w) $(M)_{4.5} = \zeta$ and $(M)_{5.6} = \varepsilon$, hence the type of the set $\{\varepsilon,\zeta\}$ is $(2^11^2,2^2)$ in contradiction to Claim 3.4.

For $Q = (2, 1, 1)$ the situation is (w) depicted on Figure 6. If $\lambda = (M)_{6,i} \in C_2$, where $j \in [2k-1, 2k]$ with $k \in [1, 2]$, then $\lambda = (M)_{4-k, 5}$. As a consequence, $r_{3+}(6) = 4$, $\eta = (M)_{6.5} \in C_2$, and with $\mu = (M)_{2.5}$, $\nu = (M)_{3.5}$ we have $\{\mu, \nu\} \subseteq \mathbb{R}(6)$. Then, however, $\operatorname{exc}(\eta) \geq 3$ (μ, ν and at least one 3+colour contribute to the excess of η).

 $Q = (1,1,2)$, Figure 7: Similarly as above we see that $r_{3+}(6) = 4$, $\eta = (M)_{6,7} \in C_2$, $\{(M)_{2,7}, (M)_{3,7}\}\subseteq \mathbb{R}_2(6)$, and so $\text{exc}(\eta) \geq 4$.

If $Q = (3,3,1,1,0)$, then (w) $(M)_{3,3} = \delta$, $(M)_{4,3} = \varepsilon$ and $\gamma \in \{(M)_{5,4}, (M)_{6,4}\}$ so that the type of the set $\{\gamma, \delta\}$ contradicts Claim 3.4.

If $Q = (3, 2, 2, 1, 0)$, then, having in mind Claim 3.4, we are (w) in the situation of Figure 8. Further, $\eta = (M)_{2,7} \in C_2$ and $\vartheta = (M)_{5,7} \in C_2$, which implies $\eta = (M)_{5,3}$ and $\vartheta = (M)_{2,3}$. Consequently, both positions in $\{(3,4),(4,6)\}$ are occupied by 3+colours, and, provided that $\mu = (M)_{i,j} \in C_2$ for some $(i, j) \in [3, 6] \times [1, 2]$, then $(i, j) \in \{(5, 1), (5, 2)\}\$ and $\mu = (M)_{6,3}$. Therefore,

$$
\Sigma \ge 4 + 2 + 7 + r_{3+}(2) \ge 14.
$$

 $Q = (3, 2, 1, 1, 1)$, (w) Figure 9 (using Claim 3.4 again): If a bullet position is occupied by a 2-colour μ , then the second copy of μ occupies a dot position. Therefore,

$$
\Sigma \ge 4 + (19 - 6) = 17.
$$

$$
Q = (3, 1, 1, 1, 2)
$$
, (w) Figure 10: Analogously as in the case of Figure 9 we obtain

$$
\Sigma \ge 5 + (19 - 6) = 18.
$$

Under the assumption $Q = (2,2,2,2,0)$ we have $q(i,7,\{\alpha,\beta,\gamma,\delta,\varepsilon,\zeta\}) = 1$ for any $i \in [3,6]$ and $g(k, l, {\alpha, \beta, \gamma, \delta, \epsilon, \zeta}) \leq 4$ for any position $(k, l) \in$ $[2,6] \times [1,6]$ occupied by a colour of $C \setminus {\alpha, \beta, \gamma, \delta, \epsilon, \zeta}$, hence $c_{3+}(7) \geq 5$, a contradiction.

If $Q = (2, 2, 2, 1, 1)$, then because of Claim 3.4 (w) there are two possibilities for the structure of M , see Figures 11 and 12.

In the case of Figure 11 a bullet position can be occupied by a 2-colour only if the second copy of that colour appears in $\{2\} \times [3,5]$. A position in $\{(2,6), (2,7), (6,1), (6,2)\}$ is occupied by a 2-colour only if the second copy of that colour is in $\{(3,5), (4,3), (5,4)\}.$ Further, at most one of the two colours in $\{i\} \times [1,2]$ with $i \in [3,5]$ is a 2-colour (which is in $\{6\} \times [3,5]$. Therefore

$$
\Sigma \ge 2 + (9 - 3) + (4 - 3) + 3 \cdot 1 + r_{3+}(2) \ge 13.
$$

In the situation of Figure 12 let

$$
k = \max(i \in \{2, 3, 5\} : (M)_{i,7} \in C_2)
$$
 and $\eta = (M)_{k,7}$.

The assumption $k = 2$ implies $\eta \in \{(M)_{3,5}, (M)_{5,4}\}.$

If $\eta = (M)_{3,5}$, see Figure 13, then

$$
\Sigma \ge 13 + r_{3+}(2) \ge 14
$$

In the case $\eta = (M)_{5,4}$ depicted in Figure 14 we have $r_{3+}(3) \geq 5$.

If $k = 3$ (Figure 15), then $\eta = (M)_{2,5}$, and from $r_{3+}(2) \geq 1$ it follows that $\operatorname{exc}(\alpha) \geq 3$, a contradiction.

Figure 16 corresponds to $k = 5$, requiring $\eta = (M)_2$ 4. If $\vartheta \in C_2$ is in $\{4\} \times [1, 2]$, then $\vartheta = (M)_{5,3}$, and, if $\iota \in C_2$ is in $\{6\} \times [1,2]$, then $\iota = (M)_{5,4}$. So, $c_{3+}(1) + c_{3+}(2) \geq 4$, which implies $\operatorname{exc}(\alpha) \geq 3$.

In the case $Q = (2, 2, 1, 1, 2)$, using Claim 3.4, (w) the description by Figure 17 applies. Claim 3.9 implies that a 2-colour occupying a position in $[3,6] \times [1,2]$ does not appear in $\{2\} \times [3, 7]$. Therefore, for any $i \in [3, 6]$ at most one of the positions in $\{i\} \times [1,2]$ is occupied by a 2-colour; as a consequence of $c_{3+} \leq 4$ and $r_{3+}(2) \geq 1$ then $\operatorname{exc}(\alpha) \geq 3.$

If $Q = (2, 1, 1, 1, 3)$, then (w) we have the situation of Figure 18 with

$$
\Sigma \ge 5 + (19 - 6) = 18
$$

 $($ reasoning as in Figure 9 $).$

The assumption $r_2(1) = 5$ implies $r_2(i) = 5$ and $r_{3+}(i) = 2$ for each $i \in [1, 6]$, hence

$$
c_2 = \frac{1}{2} \sum_{i=1}^{6} r_2(i) = 15,
$$

and, by Claims 3.2.6, 3.2.7, $c_{3+} = c_3 = 4$.

If $Q = (1, 1, 0)$, then we are (w) in the situation of Figure 19. Each colour of $\mathbb{C}_2(7)$ has its second copy in [2, 4] \times [1, 6], hence at least

$$
5 + 2c_2(7) + \sum_{i=2}^{4} r_{3+}(i) = 11 + 2c_2(7) \ge 15
$$

positions in [2, 4] \times [1, 7] are occupied by colours of $\{\alpha, \beta, \gamma, \delta, \varepsilon\} \cup \mathbb{C}_2(7) \cup C_{3+}$. Since a colour in $\mathbb{R}_2(5) \cup \mathbb{R}_2(6)$ has its second copy in $[2,4] \times [1,6]$, we have

$$
r_2(5) + r_2(6) \le 18 - (15 - 3) = 6
$$

and

$$
4 = r_{3+}(5) + r_{3+}(6) = 14 - [r_2(5) + r_2(6)] \ge 8,
$$

a contradiction.

If $Q = (3, 2, 1, 0, 0)$, then the set $\{\gamma, \delta\} \subseteq C_2$ is of the type $(2^1 1^2, 2^2)$, which contradicts Claim 3.4.

 $Q = (3,1,1,1,0)$, (w) Figure 20: A bullet position can be occupied by a colour $\mu \in C_2$ only if $\mu = (M)_{2,3}$. That is why $r_{3+}(6) \geq 3$, a contradiction.

 $Q = (2, 2, 2, 0, 0)$, (w) Figure 21: If a bullet position is occupied by a colour $\mu \in C_2$, then $\mu \in \{(M)_{3,5}, (M)_{4,3}, (M)_{5,4}\}.$ One can easily see that if $i \in [3,5]$, then at most one of colours in $\{i\} \times [6,7]$ is a 2-colour. Therefore, if $(M)_{2,j} \in C_{3+}$ for both $j = 6,7$, then

$$
c_{3+}(6) + c_{3+}(7) \ge 3 \cdot 2 + 3 \cdot 1 = 9,
$$

and there is $j \in [6,7]$ with $c_{3+}(j) \geq 5$, a contradiction. Thus, there is $j \in [6,7]$ with $(M)_{2,j} \in C_2$. Then, however, since $(M)_{6,1}$, $(M)_{6,2} \in C_2$ (a consequence of $r_{3+}(6) = 2$), the pair $\{(M)_{2,i}, (M)_{6,l}\}\$ is not good for $l = 1, 2$.

If $Q = (2, 2, 1, 1, 0)$, then (w), by Claim 3.4, the situation is depicted in Figure 22. If a 2-colour μ is in $\{(2,7),(6,1),(6,2)\}$, then $\mu \in \{(M)_{4,3}, (M)_{5,4}\}$, and if a 2-colour ν is in $\{(5,7),(6,6)\}\$, then $\nu = (M)_{2,4}$. From $r_{3+}(6) = 2$ it follows that there is a 2-colour ζ in $\{6\} \times [1,2]$; as a consequence then $\omega = (M)_{2,7} \in C_{3+}$ (with $\omega \in C_2$) the pair $\{\omega,\zeta\}$ is not good), $\eta = (M)_{5,7} = (M)_{2,4} \in C_2$, $(M)_{6,6} \in C_{3+}$, and each colour, occupying a position in $\{6\} \times [1, 2]$, is a 2-colour. In such a case, however, with $\vartheta = (M)_{4,3} \in \{(M)_{6,1}, (M)_{6,2}\}\$ the pair $\{\vartheta, \eta\}$ is not good.

 $Q = (2, 1, 1, 2, 0),$ (w) Figure 23: If $\zeta \in \{(M)_{3,7}, (M)_{6,4}\} \cap C_2$, then $\zeta = (M)_{2,6}$, and if $\eta \in \{(M)_{5,7}, (M)_{6,5}\} \cap C_2$, then $\eta = (M)_{2,3}$. Therefore, at least two positions in $\{(3,7), (5,7), (6,4), (6,5)\}\$ are occupied by 3+colours. Since $c_{3+}(7) \leq 4$, at most one position in $\{(3,7), (5,7)\}$ and at least one position in $\{(6,4), (6,5)\}$ is occupied by a 3+colour. Further, from $r_{3+}(6) = 2$ it follows that exactly one position in $\{(6,4),(6,5)\}\$ and in $\{(3,7),(5,7)\}\$ as well is occupied by a 3+colour. Consequently, by Claim 3.6, $(M)_{2.7}$, $(M)_{6.1}$ and $(M)_{6.2}$ are three distinct 2-colours; this, however, leads to a contradiction, because if $\theta \in \{(M)_{2,7}, (M)_{6,1}, (M)_{6,2}\}\cap C_2$, then necessarily $\vartheta \in \{(M)_{3,6}, (M)_{5,3}\}.$

If $Q = (1,1,1,3,0)$, then we have $(w) \{\gamma,\delta,\varepsilon\} \cap \mathbb{R}(6) = \emptyset$. If a position in $\{6\} \times ([1,5] \cup \{7\})$ is occupied by a 2-colour ζ , then $\zeta = (M)_{2,6}$, which yields $r_{3+}(6) \geq 5$, a contradiction.

If $Q = (1, 1, 1, 2, 1)$, then the situation is (w) described by Figure 24. If a 2-colour ζ is in $\{6\} \times [1,2]$, then $\zeta = (M)_{5,6}$, hence $r_{3+}(6) \geq 3$.

If $Q \in \mathcal{Q}(5,2)$, then we have $\sum_{i=1}^{7} q_i = 10$. Let $J = \{j \in [1,7] : q_j \geq 2\}$. In the case $|J| \leq 3$ realise that any colour $\zeta \in C_2 \setminus \{\alpha, \beta, \gamma, \delta, \varepsilon\}$ requires existence of a sufficient pair $(i, j) \in [2, 6] \times [1, 7]$, i.e., one satisfying $q(i, j, {\alpha, \beta, \gamma, \delta, \varepsilon}) > 3$. If (i, j) is a sufficient pair, then necessarily $j \in J$. Moreover, given $j \in J$, the number of sufficient pairs (i, j) is at most three. This is certainly true if $q_i = 3$. On the other hand, if $q_i = 2$ and $(M)_{k,l} = (M)_{1,i}$ with $k \neq 1$, then, by Claim 3.7 and the fact that $p = 2$, $(M)_{k,j} \notin {\alpha, \beta, \gamma, \delta, \varepsilon}$, which means that $g(k, j, {\alpha, \beta, \gamma, \delta, \varepsilon}) = 2$, and there are at most three i's such that the pair (i, j) is sufficient. Therefore, $c_2 \leq 5+3\cdot 3=14$, which contradicts Claim 3.2.3.

So, we have $|J| \geq 4$. If $q_1 = 3$, then

$$
10 = \sum_{j=1}^{7} q_j \ge 3 + 3 \cdot 2 + 1 \cdot 1 = 10,
$$

hence $q_2 = q_3 = q_4 = 2$, $q_5 = 1$ and $q_6 = q_7 = 0$. If $\zeta = (M)_{i,j} \in C_2$ with $(i, j) \in [2, 6] \times [6, 7]$, then, since $g(i, j, {\alpha, \beta, \gamma, \delta, \varepsilon}) = 1$, we have $\zeta \in \mathbb{C}_2(1) \setminus \{\alpha, \beta, \gamma, \delta, \varepsilon\}.$ Thus

$$
c_{3+}(6) + c_{3+}(7) \ge 2 + (10 - 3) = 9,
$$

and there is $j \in [6,7]$ with $c_{3+}(j) \geq 5$, a contradiction.

If $q_1 \leq 2$, then

$$
g(i, j, \{\alpha, \beta, \gamma, \delta, \varepsilon\}) \le q_j + 1 \le q_1 + 1 \le 3
$$

for every $(i, j) \in [2, 6] \times [1, 5]$, hence $g(k, l, \{\alpha, \beta, \gamma, \delta, \varepsilon\}) \geq 2$ whenever $(k, l) \in [2, 6] \times [6, 7]$ and $(M)_{k, l} \in C_2$, which implies $q_l \geq 1, l = 6, 7$. As a consequence, then

$$
10 = \sum_{j=1}^{7} q_j \ge 2|J| + (7 - |J|) = |J| + 7 \ge 11,
$$

a final contradiction proving Theorem 1.3.

Acknowledgements

The author is grateful to an anonymous referee for constructive remarks to the original manuscript. The research was supported by the Slovak Research and Development Agency (grant APVV-19-0153).

REFERENCES

- [1] A. Bouchet, *Indice achromatique des graphes multiparti complets et réquliers*, Cahiers du Centre d'Études de Recherche Opérationelle 20 (1978), 331-340.
- [2] N.P. Chiang, H.L. Fu, On the achromatic number of the Cartesian product $G_1 \times G_2$, Australas. J. Combin. 6 (1992), 111-117.
- [3] N.P. Chiang, H.L. Fu, The achromatic indices of the regular complete multipartite graphs, Discrete Math. 141 (1995), 61–66.
- [4] F. Harary, S. Hedetniemi, G. Prins, An interpolation theorem for graphical homomor*phisms*, Portug. Math. **26** (1967), 454-462.
- [5] M. Horňák, The achromatic number of $K_6 \square K_q$ equals $2q + 3$ if $q \geq 41$ is odd, arXiv:2009.06955v1 [math.CO].
- [6] M. Horňák, The achromatic number of the Cartesian product of K_6 and K_q , $arXiv:2009.07521v1$ [math.CO].
- [7] M. Horňák, Š. Pčola, Achromatic number of $K_5 \times K_n$ for large n, Discrete Math. 234 $(2001), 159-169.$
- [8] M. Horňák, S. Pčola, *Achromatic number of* $K_5 \times K_n$ *for small n*, Czechoslovak Math. J. 53 (128) (2003) , 963-988.
- [9] M. Horňák, J. Puntigán, On the Achromatic Number of $K_m \times K_n$, [in:] M. Fiedler (ed.), Graphs and Other Combinatorial Topics, Teubner, Leipzig, 1983, $118 - 123.$
- [10] W. Imrich, S. Klavžar, Product Graphs, Wiley-Interscience, New York, 2000.

Mirko Horňák mirko.hornak@upjs.sk \bullet https://orcid.org/0000-0002-3588-8455

P.J. Safárik University Institute of Mathematics Jesenná 5, 040 01 Košice, Slovakia

Received: September 18, 2020. Revised: January 6, 2021. Accepted: January 27, 2021.