Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.
Wydawca
Rocznik
Tom
Strony
229--242
Opis fizyczny
Bibliogr. 3 poz., rys.
Twórcy
autor
- Department of Computational Intelligence, Czestochowa University of Technology al. Armii Krajowej 36, 42-200 Częstochowa, Poland
autor
- Department of Computational Intelligence, Czestochowa University of Technology al. Armii Krajowej 36, 42-200 Częstochowa, Poland
autor
- Management Department University of Social Sciences, 90-113 Łod´z
autor
- Information Technology Institute University of Social Sciences, 90-113 Łod´z
- Clark University Worcester, MA 01610, USA
autor
- Department of Computer, Control and Management Engineering Sapienza University of Rome, Via Ariosto 25 Roma 00185, Italy
Bibliografia
- [1] D. Dubois and H. Prade. Fuzzy sets and systems: Theory and applications. Academic Press, Inc., New York, 1980.
- [2] M. Jones and D. Mewhort. Case-sensitive letter and bigram frequency counts from large-scale english corpora. Behavior Research Methods, Instruments, & Computers, 36:388–396, 2004.
- [3] E. L’Homer. Extraction of strokes in handwritten characters. Pattern Recognition, 33:1147–1160, 2000.
- [4] J. M. Mendel. Computing with words and its relationships with fuzzistics. Information Sciences, 177(4):988–1006, 2007.
- [5] R. K. Nowicki and J. T. Starczewski. A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci., 414:33–52, 2017.
- [6] D. J. Ostrowski and P. Y. K. Cheung. A Fuzzy Logic Approach to Handwriting Recognition, pages 299–314. Vieweg+Teubner Verlag, Wiesbaden, 1996.
- [7] D. Phan, I.-S. Na, S.-H. Kim, G.-S. Lee, and H.-J. Yang. Triangulation based skeletonization and trajectory recovery for handwritten character patterns. KSII Transactions on Internet and Information Systems, 9:358–377, 2015.
- [8] J. T. Starczewski. Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty, volume 284 of Studies in Fuzziness and Soft Computing. Springer, 2013.
- [9] M. Wróbel, K. Nieszporek, J. T. Starczewski, and A. Cader. A fuzzy measure for recognition of handwritten letter strokes. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, editors, Artificial Intelligence and Soft Computing, pages 761–770, Cham, 2018. Springer International Publishing.
- [10] M. Wróbel, J. T. Starczewski, and C. Napoli. Handwriting recognition with extraction of letter fragments. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, editors, Artificial Intelligence and Soft Computing, pages 183–192, Cham, 2017. Springer International Publishing.
- [11] M. Wróbel, J. T. Starczewski, and C. Napoli. Grouping handwritten letter strokes using a fuzzy decision tree. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, editors, Artificial Intelligence and Soft Computing, pages 103–113, Cham, 2020. Springer International Publishing.
- [12] M. Wróbel, J. T. Starczewski, K. Nieszporek, P. Opiełka, and A. Kaźmierczak. A greedy algorithm for extraction of handwritten strokes. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M. Zurada, editors, Artificial Intelligence and Soft Computing, pages 464–473, Cham, 2019. Springer International Publishing.
- [13] M. Zalasiński, K. Łapa, K. Cpałka, K. Przybyszewski, and G. G. Yen. On-line signature partitioning using a population based algorithm. Journal of Artificial Intelligence and Soft Computing Research, 10(1):5–13, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a1d990-339d-4563-b881-6e74388475b2