Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The occurrence of faults in coal seams has an impact on the possibility of methane hazard. There are several methods for identifying tectonic faults, but they cannot be applied directly to solve dynamic hazard problems in coal mine. Thus, searching for appropriate methods, that can detect faults in regional and local scales is needed. In order to meet this need, the paper proposes a new measurement method of estimating changes to the coal structure, based on profilometry measurements (roughness analysis) and application of madogram functions. Based on examining coal samples from near fault zones it was shown that the proposed approach allows us to detect changes of the coal surface that appear as the distance to a tectonic fault gets shorter. The proposed method, due to its simplicity and speed of measurement, implies a potential for practical application in the process of detecting local tectonic dislocations in coal mines.
Wydawca
Czasopismo
Rocznik
Tom
Strony
743--756
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Strata Mechanics Research Institute of the Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland
Bibliografia
- [1] W. Song, J. Cheng, W. Wang, Y. Qin, Z. Wang, M. Borowski, Y. Wang, P. Tukkaraja, Underground Mine gas explosion accidents and prevention techniques – an overview. Arch. Min. Sci. 66 (2), 297-312 (2021). DOI: https://doi.org/10.24425/ams.2021.137463.
- [2] D.J. Black, Review of coal and gas outburst in Australian underground coal mines. Int. J. Min. Sci. Technol. 29 (6), 815-824 (2019). DOI: https://doi.org/10.1016/j.ijmst.2019.01.007.
- [3] H. Li, Y. Ogawa, S. Shimada, Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel 82, 1271-1279 (2003). DOI: http://doi.org/10.1016/S0016-2361(03)00020-6.
- [4] N. Skoczylas, A. Pajdak, K. Kozieł, L. Braga, Methane emission during gas and rock outburst on the basis of the unipore model. Energies 12 (10), 1999 (2019). DOI: https://doi.org/10.3390/en12101999.
- [5] Q. Tu, Y. Cheng, T. Ren, Z. Wang, J. Lin, Y. Lei, Role of tectonic coal in coal and gas outburst behavior during coal mining. Rock Mech. Rock Eng. 52 (11), 4619-35 (2019). DOI: http://doi.org/10.1007/s00603-019-01846-0.
- [6] X. Pan, H. Cheng, J. Chen, X. Zhou, An experimental study of the mechanism of coal and gas outbursts in the tectonic regions. Eng. Geol. 279, 105883 (2020). DOI: http://doi.org/10.1016/j.enggeo.2020.105883.
- [7] L. Wang, Z. Long, Y. Song, Z. Qu, Supercritical CO2 adsorption and desorption characteristics and pore structure controlling mechanism of tectonically deformed coals. Fuel 317, 123485 (2022). DOI: http://doi.org/10.1016/j.fuel.2022.123485.
- [8] M. Skiba, K. Godyń, M. Młynarczuk, Identification of Structurally Altered Coal from Near-Fault Zones as Performed with Neural Classifiers. J. Min. Sci. 57 (5), 873-882 (2021). DOI: http://doi.org/10.1134/S1062739121050173.
- [9] F.H. An, Y.P. Cheng, An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas. Nat. Hazards Earth Syst. Sci. 1, 4751-75 (2013). DOI: http://doi.org/10.5194/nhess-14-2125-2014.
- [10] W. Li, T. Ren, A. Busch, S.A.M. den Hartog, Y. Cheng, W. Qiao, B. Li, Architecture, stress state and permeability of a fault zone in Jiulishan coal mine, China: Implication for coal and gas outbursts. Int. J. Coal Geol. 198, 1-13 (2018). DOI: http://doi.org/10.1016/j.coal.2018.09.002.
- [11] N. Skoczylas, A. Pajdak, M. Kudasik, L. Braga, CH4 and CO2 sorption and diffusion carried out in various temperatures on hard coal samples of various degrees of coalification. J. Nat. Gas Sci. Eng. 81, 103449 (2020). DOI: http://doi.org/10.1016/j.jngse.2020.103449.
- [12] Y.X. Cao, D. He, G.C. David, Coal and gas outbursts in footwalls of reverse faults. Int. J. Coal Geol. 48, 47-63 (2001). DOI: http://doi.org/10.1016/S0166-5162(01)00037-4.
- [13] Y. Cao, A. Davis, R. Liu, X. Liu, Y. Zhang, The influence of tectonic deformation on some geochemical properties of coals – a possible indicator of outburst potential. Int. J. Coal Geol. 53, 69-79 (2003). DOI: http://doi.org/10.1016/S0166-5162(02)00077-0.
- [14] M. Młynarczuk, M. Wierzbicki, Stereological and profilometry methods in detection of structural deformations in coal samples collected from the rock and outburst zone in the “Zofiówka” Colliery. Arch. Min. Sci. 54 (2), 189-201 (2009).
- [15] Y. Chen, F. Xie, X. Zhang, C. Wang, X. Xu, X. Wang, Y. Wang, Fault identification approach and its application for predicting coal. Arabian J. Geosci. 14, 710 (2021). DOI: https://doi.org/10.1007/s12517-021-07042-1.
- [16] A.Y. Sun, Identification of geologic fault network geometry by using a grid-based ensemble kalman filter. J. Hazard. Toxic Radioact. Waste 15 (4), 228-233 (2011). DOI: http://doi.org/10.1061/(ASCE)HZ.1944-8376.0000072.
- [17] Z.H. Zheng, J.Q. Tan, K. Liu, Most extreme curvature and its application to seismic structural interpretation. Appl. Mech. Mater. 522-524, 1266-1269 (2014). DOI: http://doi.org/10.4028/www.scientific.net/AMM.522-524.1266.
- [18] H.Q Xu, S.Z. Sun, Z. Gui, S. Luo, Detection of sub-seismic fault footprint from signal-to-noise ratio based on wavelet modulus maximum in the tight reservoir. J. Appl. Geophys. 114, 259-262 (2015). DOI: http://doi.org/10.1016/j.jappgeo.2015.01.021.
- [19] M. Noori, H. Hassani, A. Javaherian, H. Amindavar, S. Torabi, Automatic fault detection in seismic data using Gaussian process regression. J. Appl. Geophys. 163, 117-131 (2019). DOI: http://doi.org/10.1016/j.jappgeo.2019.02.018.
- [20] M. Elhag, D. Alshamsi, Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geosciientific Instrumentation, Methods and Data Systems 8 (1), 45-54 (2019). DOI: http://doi.org/10.5194/gi-8-45-2019.
- [21] Ch. Wang, J. Chen, X. Chen, J. Chen, Identification of concealed faults in a grassland area in Inner Mongolia, China, using the temperature vegetation dryness index. J. Earth. Sci. 30 (4), 853-860 (2019). DOI: http://doi.org/10.1007/s12583-017-0980-9.
- [22] R.D. Lama, J. Bodziony, Outburst of Gas, coal and Rock in Underground Coal Mines. R.D. Lama & Associates, Wollongong, NSW Australia (1996).
- [23] H. Wackernagel, Multivariate geostatistics: an introduction with applications. Springer-Verlag Berlin Heidelberg GmbH (2003).
- [24] A. Boryczko, Effect of waviness and roughness components on transverse profiles of turned surfaces. Measurement 46, 688-696 (2013). DOI: http://doi.org/10.1016/j.measurement.2012.09.007.
- [25] S. Pomberger, M. Stoschka, M. Leitner, Cast surface texture characterisation via areal roughness. Precis. Eng. 60, 465-481 (2019). DOI: http://doi.org/10.1016/j.precisioneng.2019.09.007.
- [26] L. Gurau, H. Mansfield-Williams, M. Irle, Filtering the roughness of a sanded wood surface. Holz als Roh- und Werkstoff 64, 363-371 (2006). DOI: http://doi.org/10.1007/s00107-005-0089-1.
- [27] H. Hocheng, M.L. Hsieh, Signal analysis of surface roughness in diamond turning of lens molds. Int. J. Mach. Tools Manuf. 44, 1607-1618 (2004). DOI: http://doi.org/10.1016/j.ijmachtools.2004.06.003.
- [28] Q. Chen, S. Yang, Z. Li, Surface roughness evaluation by using wavelets analysis, Precis. Eng. 23, 209-212 (1999). DOI: http://doi.org/10.1016/S0141-6359(99)00013-6.
- [29] M. Młynarczuk, M. Skiba, L. Sitek, P. Hlaváček, A. Kožušníková, The research into the quality of rock surfaces obtained by abrasive water jet cutting. Arch. Min. Sci. 59 (4), 925-940 (2014). DOI: http://doi.org/10.2478/amsc-2014-0064.
- [30] C.C.A Chen, W.C. Liu, N.A. Duffie, A Surface Topography Model for Automated Surface Finishing. Int. J. Mach. Tools Manufact. 38, 543-550 (1998). DOI: http://doi.org/10.1016/S0890-6955(97)00100-4.
- [31] M. Młynarczuk, Description and classification of rock surfaces by means of laser profilometry and mathematical morphology. Int. J. Rock Mech. Min. Sci. 47 (1), 138-149. (2010). DOI: http://doi.org/10.1016/j.ijrmms.2009.09.004.
- [32] J. Serra, L. Vincent, An Overview of Morphological Filtering. Circuits Syst. Signal Process. 11 (1), 47-108 (1992). DOI: http://doi.org/10.1007/BF01189221.
- [33] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London (1982).
- [34] J. Serra, Alternating sequential Filters, Image Analysis and Mathematical Morphology, Volume II, Theoretical Advances, ed. J. Serra, Academic Press, London (1988).
- [35] U.C Herzfeld, C. Overbeck, Analysis and simulation of scale-dependent fractal surface with application to seafloor morphology. Comput. Geosci. 25, 979-1007 (1999). DOI: http://doi.org/10.1016/S0098-3004(99)00062-X.
- [36] A. Marache, J. Riss, S. Gentier, J.P. Chiles, Characterization and reconstruction of a rock fracture surface by geostatistics. Int. J. Numer. Anal. Meth. Geomech. 26, 873-896 (2002). DOI: http://doi.org/10.1002/nag.228.
- [37] S. Trevisani, M. Rocca, MAD: robust image texture analysis for applications in high resolution geomorphometry. Comput. Geosci. 81, 78-92 (2015). DOI: http://doi.org/10.1016/j.cageo.2015.04.003.
- [38] J. Lipiec, B. Usowicz, Spatial relationships among cereal yields and selected soil physical and chemical properties. Sci. Total Environ. 633, 1579-1590 (2018). DOI: https://doi.org/10.1016/j.scitotenv.2018.03.277.
- [39] S.J. Ha, Y.J. Jeong, T.S. Yun, Parameterization of the representative sizes of microstructural features in rocks using 3D X-ray computed tomographic images. Comput. Geosci. 144, 104590 (2020). DOI: http://doi.org/10.1016/j.cageo.2020.104590.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a1001f-9b90-4255-9ef1-93a9643ccf3e