PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Gas Cloud Boundary Estimation and Tracking using Mobile Sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses issues concerned with design and managing of monitoring systems comprised of mobile wireless sensing devices (MANETs). The authors focus on self-organizing, cooperative and coherent networks that maintain a continuous communication with a central operator and adopt to changes in an unknown environment to achieve a given goal. The attention is focused on the development of MANET for heavy gas clouds detection and its boundary estimating and tracking. Two strategies for constructing the MANET are described, in which sensors explore the region of interest to detect the gas cloud, create temporary network topology and finally, cover the cloud boundary, and track the moving cloud. The utility and efficiency of the proposed strategies has been justified through simulation experiments.
Rocznik
Tom
Strony
38--49
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska st 15/19, 00-665 Warsaw, Poland
  • Research and Academic Computer Network (NASK), Kolska st 12, 01-045 Warsaw, Poland
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska st 15/19, 00-665 Warsaw, Poland
  • Research and Academic Computer Network (NASK), Kolska st 12, 01-045 Warsaw, Poland
Bibliografia
  • [1] R. Jones, B. Wills, and C. Kang, “Chlorine gas: An evolving hazardous material threat and unconventional weapon”, Western J. of Emerg. Medicine: Integrat. Emerg. Care with Population Health, vol. 11, no. 2, pp. 151–156, 2010.
  • [2] C. C. Yockey, B. M. Eden, and R. B. Byrd, “The McConnell missile accident. Clinical spectrum of nitrogen dioxide exposure”, JAMA, vol. 244, no. 11, pp. 1221–1223, 1980.
  • [3] N. B. Charan, C. G. Myers, S. Lakshminarayan, and T. M. Spencer, “Pulmonary injuries associated with acute sulfur dioxide inhalation”, Am. Rev. Respir. Dis., vol. 119, no. 4, pp. 555–560, 1979.
  • [4] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Mobile Ad Hoc Networking. Wiley, 2004.
  • [5] M. T. Thai, R. Tiwari, R. Bose, and A. Helal, “On detection and tracking of variant phenomena clouds”, ACM Trans. Sen. Netw., vol. 10, no. 2, pp. 34:1–34:33, 2014.
  • [6] K. Jung-Hwan, K. Kee-Bum, H. C. Sajjad, C. Min-Woo, and P. Myong-Soon, “Energy-efficient tracking of continuous objects in wireless sensor networks”, in Ubiquitous Intelligence and Computing, H. Jin, L. T. Yang, and J. J.-P. Tsai, Eds. Springer, 2008, pp. 323–337.
  • [7] S. Duttagupta, K. Ramamritham, and P. Ramanathan, “Distributed boundary estimation using sensor networks”, in Proc. IEEE Int. Conf. Mob. Adhoc & Sensor Syst. MASS 2006, Vancouver, Canada, 2006, pp. 316–325.
  • [8] H. Hong, J. Lee S. Oh, and S. H. Kim, “A chaining selective wakeup strategy for a robust continuous object tracking in practical wireless sensor networks”, in Proc. 27th IEEE Int. Conf. Adv. Inform. Netw. & Appl AINA 2013, Barcelona, Spain, 2013, pp. 333–339.
  • [9] T. Aurisch and J. Tölle, “Relay placement for ad-hoc networks in crisis and emergency scenarios”, in Proc. Inform. Systems and Technology Panel Symposium IST-091, Bucharest, Romania, 2009, vol. 11.
  • [10] G. Y. Keung, Q. Zhang B. Li, and H. D. Yang, “The target tracking in mobile sensor networks”, in Proc. Global Telecommun. Conf. GLOBECOM 2011, Houston, TX, USA, 2011, pp. 1–5.
  • [11] E. Niewiadomska-Szynkiewicz and A. Sikora, “Simulation-based evaluation of robot-assisted wireless sensors positioning”, in Progress in Automation, Robotics and Measuring Techniques, R. Szewczyk, C. Zieliński, and M. Kaliczyńska, Eds. Springer, 2015, pp. 181–190.
  • [12] R. R. Roy, Handbook of Mobile Ad Hoc Networks for Mobility Models. Springer Science & Business Media, 2010.
  • [13] E. Niewiadomska-Szynkiewicz, A. Sikora, and J. Kołodziej, “Modeling mobility in cooperative ad hoc networks”, Mob. Netw. and Appl., vol. 18, no. 5, pp. 610–621, 2013.
  • [14] T. Facchinetti, G. Franchino, and G. Buttazzo, “A distributed coordination protocol for the connectivity maintenance in a network of mobile units”, in Proc. 2nd Int. Conf. Sensor Technol. & Appl. SENSORCOMM’08, Cap Esterel, France, 2008, pp. 764–769.
  • [15] Z. Kan, L. Navaravong, J. M. Shea, E. L. Pasiliao, and W. E. Dixon, “Graph matching-based formation reconfiguration of networked agents with connectivity maintenance”, IEEE Trans. Control Netw. Syst., vol. 2, no. 1, pp. 24–35, 2015.
  • [16] R. K. Williams and G. S. Sukhatme, “Constrained interaction and coordination in proximity-limited multiagent systems”, IEEE Trans. on Robot., vol. 29, no 4, pp. 930–944, 2013.
  • [17] N. Michael, M. M. Zavlanos, V. Kumar, and G. J Pappas, “Maintaining connectivity in mobile robot networks”, in Experimental Robotics, O. Khatib, V. Kumar, and G. Pappas, Eds. Springer, 2009, pp. 117–126.
  • [18] A. Konak, G. E. Buchert, and J. Juro, “A flocking-based approach to maintain connectivity in mobile wireless ad hoc networks”, Appl. Soft Comput., vol. 13, no. 2, pp. 1284–1291, 2013.
  • [19] S. Hauert, L. Winkler, J. C. Zufferey, and D. Floreano, “Antbased swarming with positionless micro air vehicles for communication relay”, Swarm Intelligence, vol. 2, no. 2–4, pp. 167–188, 2008.
  • [20] R. Lin, Z. Wang, and Y. Sun, “Wireless sensor networks solutions for real time monitoring of nuclear power plant”, in Proc. 5th World Congr. Intell. Control & Autom. WCICA 2004, Hangzhou, China, 2004, vol. 4.
  • [21] A. Vasiliou and A. A. Economides, “MANETs for environmental monitoring”, in Proc. Int. Telecommun. Symp. ITS 2006, Fortaleza, Ceara, Brazil, 2006, pp. 813–818.
  • [22] T. P. Lambrou and C. G. Panayiotou, “Collaborative event detection using mobile and stationary nodes in sensor networks”, in Proc. 3rd Int. Conf. Collabor. Comput.: Networking, Applications & Worksharing CollaborateCom 2007, New York, NY, USA, 2007, pp. 106–115.
  • [23] K. Young-Duk, Y. Yeon-Mo, K. Won-Seok, and K. Dong-Kyun, “On the design of beacon based wireless sensor network for agricultural emergency monitoring systems”, Comp. Stand. & Interf., vol. 36, no. 2, pp. 288–299, 2014.
  • [24] Y.-N. Lien, H.-C. Jang, and T.-C. Tsai, “A MANET based emergency communication and information system for catastrophic natural disasters”, in Proc. 29th IEEE Int. Conf. Distrib. Comput. Syst. Worksh. ICDCS Workshops’09, Montreal, Canada, 2009, pp. 412–417.
  • [25] Y.-N. Lien, L.-C. Chi, and C.-C. Huang, “A multi-hop walkie-talkielike emergency communication system for catastrophic natural disasters”, in Proc. 39th Int. Conf. Parallel Process. Worksh. ICPPW 2010, San Diego, CA, USA, 2010, pp. 527–532.
  • [26] M. Aloqaily, S. Otoum, and H. T. Mouftah, “A novel communication system for firefighters using audio/video conferencing/subconferencing in standalone manets”, in Proc. 5th Int. Conf. Comp. Sci. & Inform. Technol. CSIT 2013, Amman, Jordan, 2013, pp. 89–98.
  • [27] J. C. Kim et al., “Implementation and performance evaluation of mobile ad hoc network for emergency telemedicine system in disaster areas”, in Proc. Annual Int. Conf. IEEE Engin. in Medicine & Biology EMBC 2009, Minneapolist, MN, USA, 2009, pp. 1663–1666.
  • [28] E. Kulla, R. Ozaki, A. Uejima, H. Shimada, K. Katayama, and N. Nishihara, “Real world emergency scenario using MANET in indoor environment: Experimental data”, in Proc. 9th Int. Conf. on Complex, Intell., & Softw. Intensive Syst. CISIS 2015, Blumenau, Brazil, 2015, pp. 336–341.
  • [29] Z. Jin and A. L. Bertozzi, “Environmental boundary tracking and estimation using multiple autonomous vehicles”, in Proc. 46th IEEE Conf. Decision & Control, New Orleans, LA, USA, 2007, pp. 4918–4923.
  • [30] D. Marthaler and A. L. Bertozzi, “Collective motion algorithms for determining environmental boundaries”, in SIAM Conf. on Applications of Dynamical Systems, Snowbird, UT, USA, 2003.
  • [31] I. Triandaf and I. B. Schwartz, “A collective motion algorithm for tracking time-dependent boundaries”, Mathem. & Comp. in Simulation, vol. 70, no. 4, pp. 187–202, 2005.
  • [32] S. Srinivasan, “Contour estimation using collaborating mobile sensors”, in Proc. Worksh. Dependability Issues in Wirel. Ad Hoc Netw. & Sensor Netw. DIWANS’06, Los Angeles, CA, USA, 2006, pp. 73–82.
  • [33] T. S. Rappaport, Wireless Communications – Principles and Practice, 2nd ed. Prentice Hall, 2001.
  • [34] M. T. Markiewicz, “Mathematical modeling of heavy gas atmospheric dispersion over complex and obstructed terrain”, Archiv. of Environm. Protect., vol. 36, no, 1, pp. 81–94, 2010.
  • [35] M. Nielsen, “Dense gas dispersion in the atmosphere”, Tech. Rep. Risø-R-1030(EN), Risø National Laboratory, Roskilde, Denmark, Sept. 1998.
  • [36] H. W. M. Witlox, “The HEGADAS model for ground-level heavy-gas dispersion-I. Steady-state model”, Atmospheric Environ., vol. 28, no. 18, pp. 2917–2932, 1994.
  • [37] R. E. Britter and J. E. Simpson, “Experiments on the dynamics of a gravity current head”, J. Fluid Mechan., vol. 88, no. 2, pp. 223–240, 1978.
  • [38] S. S. Ponda, L. B. Johnson, A. N. Kopeikin, H.-L. Choi, and J. P. How, “Distributed planning strategies to ensure network connectivity for dynamic heterogeneous teams”, IEEE J. Selec. Areas in Commun., vol. 30, no. 5, pp. 861–869, 2012.
  • [39] P. D. Hung, M. T. Pham, T. Q. Vinh, and T. D. Ngo, “Selfdeployment strategy for a swarm of robots with global network preservation to assist rescuers in hazardous environments”, in Proc. IEEE Int. Conf. Robot. & Biomimetics ROBIO 2014, Bali, Indonesia, 2014, pp. 2655–2660.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38a046b6-0420-4c64-a884-0b7af0d1e89c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.