Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article discusses the option for the application of the methodology for the solution of boundary value problems on the conformal mapping for the calculation of filtration process in the horizontal systematic drainage, provided that the drain is installed at a different depth. In particular, the case of methods combining fictitious areas and quasiconformal mappings for solving nonlinear boundary conditions problems for calculating filtration regimes in soils with free sections of boundaries (depression curves) and intervals of the “drainage” type. As an example, the authors designed a hydrodynamic flow grid, determined the values of the flows to the drain, established a section line and elicited other process characteristics. The algorithm for the numerical solution of model nonlinear boundary conditions problems of quasiconformal reflection in areas bounded by two equipotential lines and two flow lines, when for one of the sections, the boundary is an unknown (free) curve with fixed and free ends. The conducted numerical calculations prove that the problems and algorithms of their numerical solution, with a relatively small iterations number (k = 141) suggested in the paper, can be applied in the simulation of nonlinear filtration processes that arise in horizontal drainage systems. Total filtration flow obtained Q = 0.9 dm3∙s–1; flow for drains Q1 = 0.55 dm3∙s–1 and Q2 = 0.35 dm3∙s–1 are quite consistent with practically determined values.
Wydawca
Czasopismo
Rocznik
Tom
Strony
74--78
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Rivne State University of Humanities, Rivne, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
autor
- National University of Water and Environmental Engineering, Rivne, 11 Soborna St., 33028, Ukraine
Bibliografia
- BERESLAVSKII E.N. 2014. Application of the Polubarinova-Kochina method for investigating filtration flows from foundation pits enclosed by Joukowski tongs. Doklady Physics. No. 59. р. 193– 197. DOI 10.1134/S1028335814040065.
- BOHAIENKO V. 2019. A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative. Computational and Applied Mathematics. No. 38, 105 p. 1– 21. DOI 10.1007/s40314-019-0878-5.
- BOMBA A.YA., BULAVATSKUI V.M., SKOPETSKUI V.V. 2007. Neliniini matematychni modeli protsesiv heohidrodynamiky [Nonlinear mathematical models of geohydrodynamic processes]. Kyiv. Naukova dumka. ISBN 978-966-00-0652-2 pp. 308.
- BOMBA A.YA., HAVRYLIUK V.I. 2008. Modyfikatsiya alhorytmu chyslovoho rozv'yazanniya obernenykh zadach na kvazikonformni vidobrazhennya dlya vypadku oblastey iz vil'nymy mezhamy [Modification of the algorithm for numerical solution of inverse problems on quasi-conformal mappings for areas with free boundaries]. Visnyk Kharkivskoho natsional'noho universytetu. Ser. Matematychne modelyuvanniya. Informatsiini tekhnolohii. Avtomatyzovani systemy upravlinniya. No. 833 p. 39–46.
- BOMBA A., TKACHUK M., HAVRYLIUK V., KYRYSHA R., GERASIMOV I., PINCHUK O. 2018. Mathematical modelling of filtration processes in drainage systems using conformal mapping. Journal of Water and Land Development. No. 39. Iss. 1 p. 11–15. DOI 10.2478/ jwld-2018-0054.
- CASTRO-ORGAZ O., HAGER W.H. 2017. Seepage flows. In: Non-hydrostatic free surface flows. Advances in Geophysical and Environmental Mechanics and Mathematics. Cham. Springer p. 317–392. DOI 10.1007/978-3-319-47971-2_4.
- DIETHELM K. 2011. An efficient parallel algorithm for the numerical solution of fractional differential equations. Fractional Calculus and Applied Analysis. No. 14 (3) p. 475–490. DOI 10.2478/ s13540-011-0029-1.
- GUBKINA E.V., DAVYDKIN I.B., MONAKHOV V.N. 2007. Numerical solution of a problem about the parameters of a conformal mapping. Journal of Applied and Industrial Mathematics. No. 1 p. 193–200. DOI 10.1134/S199047890702010X.
- KLIMOV S., PINCHUK O., KUNYTSKIY S., KLIMOVA A. 2019. Limiting horizontal water filtration using drainage-screened modules. Journal of Water and Land Development. No. 43 p. 90–95. DOI 10.2478/jwld-2019-0066.
- KOZLOWSKI T., LUDYNIA A. 2019. Permeability coefficient of low permeable soils as a single-variable function of soil parameter. Water. Vol. 11(12), 2500. DOI 10.3390/w11122500.
- MARCHUK G.I. 1989. Metody vychislitel'noy matematiki [Methods of computational mathematics]. Kiev. Naukova dumka. ISBN 5-02- 014222-0 pp. 334.
- MITCHEL J.K., SOGA K. 2005. Fundamentals of soil behaviour. John Wiley Sons, Inc. ISBN 978-0-471-46302-7 pp. 592.
- POLUBARINOVA-KOCHINA P.Ya. 1948. Nekotoryye zadachi ploskogo dvizheniya gruntovykh vod [Some issues of flat motion of groundwater]. Moscow–Leningrad. USSR Academy of Sciences Publishing House pp. 144.
- ROKOCHINSKIY A., VOLK P., PINCHUK O., TURCHENIUK V., FROLENKOVA N., GERASIMOV Ie. 2019a. Forecasted estimation of the efficiency of agricultural drainage on drained lands. Journal of Water and Land Development. No. 40 p. 149–153. DOI 10.2478/jwld-2019- 0016.
- ROKOCHYNSKIY A., VOLK P., FROLENKOVA N., PRYKHODKO N., GERASIMOV I., PINCHUK O. 2019b. Evaluation of climate changes and their accounting for developing the reclamation measures in western Ukraine. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 1(83) p. 3–13. DOI 10.22630/PNIKS .2019.28.1.1.
- SAMARSKIY A.A. 1977. Teoriya raznostnykh skhem [The theory of difference schemes]. Moscow. Nauka pp. 656.
- SATO K., IWASA Y. 2000. Formulation of the basic groundwater flow equations. In: Groundwater hydraulics. Eds. K. Sato, Y. Iwasa. Tokyo. Springer p. 15–72. DOI 10.1007/978-4-431- 53959-9_2.
- SMEDEMA L.K. 2011. Drainage development: driving forces, conducive conditions and development trajectories. Irrigation and Drainage. Vol. 60. Iss. 5 p. 654–659. DOI 10.1002/ird.615.
- VAN DER MOLEN W.H., MARTÍNEZ BELTRÁN J., OCHS W.J. 2007. Guidelines and computer programs for the planning and design of land drainage systems. FAO Irrigation and Drainage Paper. No. 62. Rome. FAO. ISBN 978-92-5-105670-7 pp. 228.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-389f3556-425d-4918-bcd5-4fd76aa32483