Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Previously unknown exposures of silicified serpentinites have been documented within the Szklary Massif, which is a fragment of the tectonically dismembered Central Sudetic Ophiolite (NE Bohemian Massif). On the basis of textural, mineralogical and chemical differences, two types of silicified serpentinites have been distinguished in this study (Type I and Type II). Type I is characterized by well-preserved primary minerals cut by numerous veinlets filled with microscale euhedral quartz crystals. Studied samples of Type I are enriched in silica (from 62 to 69 wt.% SiO2) and depleted in magnesium (from 10 to 19 wt.% MgO) in comparison to serpentinized peridotites from the Szklary Massif. Type II is almost exclusively composed of amorphous or poorly crystalline silica, with microquartz aggregates being the most abundant form. Silicified serpentinites of Type II show extremely high values of silica (from 83 to 90 wt.% SiO2) and low magnesium concentrations (from 4 to 8 wt.% MgO). Both types of silicified serpentinites have elevated content of REE and many other trace elements generally regarded as incompatible. We infer that the earlier silicification event was caused by the percolation of Si-rich hydrothermal fluids derived from igneous rocks, which intruded this area from ca. 380 to 330 Ma. A subsequent silicification event is the result of silica remobilization during intense chemical weathering under tropical conditions, which could have occurred between Late Cretaceous and Miocene.
Wydawca
Czasopismo
Rocznik
Tom
Strony
20--35
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- University of Wrocław, Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
autor
- University of Wrocław, Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
autor
- University of Wrocław, Institute of Geological Sciences, pl. Maksa Borna 9, 50-204 Wrocław, Poland
Bibliografia
- Aftabi, A., & Zarrinkoub, M., H. (2013). Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu–Au ore exploration in metaophiolites. Lithos, 156–159, 186–203. DOI: 10.1016/j.lithos.2012.11.006.
- Aiglsperger, T., Proenza, J. A., Lewis, J. F., Labrador, M., Svojtka, M., Rojas-Purón, A., Longo, F., & Ďurišová, J. (2016). Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews, 73, 127–147. DOI: 10.1016/j.oregeorev.2015.10.010.
- Aleksandrowski, P., & Mazur, S. (2002). Collage tectonics in the northeastern most part of the Variscan Belt: the Sudetes, Bohemian Massif. Geological Society, London, Special Publications, 201(1), 237–277. DOI: 10.1144/GSL.SP.2002.201.01.12.
- Auclair, M., Gauthier, M., Trottier, J., Jebrak, M., & Chartrand, F. (1993). Mineralogy, geochemistry, and paragenesis of the Eastern Metals serpentinite-associated Ni-CuZn deposit, Quebec Appalachians. Economic Geology, 88(1), 123–138. DOI: 10.2113/gsecongeo.88.1.123.
- Awdankiewicz, M., Kryza, R., Turniak, K., Ovtcharova, M., & Schaltegger, U. (2021). The Central Sudetic Ophiolite (European Variscan Belt): Precise U-Pb zircon dating and geotectonic implications. Geological Magazine, 158(3), 555–566. DOI: 10.1017/S0016756820000722.
- Badura, J., & Dziemiańczuk, E. (1981). Szczegółowa mapa geologiczna Sudetów 1:25 000, ark. Ząbkowice Śląskie. Wydawnictwo Geologiczne, Warszawa.
- Boskabadi, A., Pitcairn, I. K., Leybourne, M. I., Teagle, D. A. H., Cooper, M. J., Hadizadeh, H., Nasiri Bezenjani, R., & Monazzami Bagherzadeh, R. (2020). Carbonation of ophiolitic ultramafic rocks: Listvenite formation in the Late Cretaceous ophiolites of eastern Iran. Lithos, 352–353, 105307. DOI: 10.1016/j.lithos.2019.105307.
- Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123–128. DOI: 10.2113/gselements.9.2.123.
- Čermáková, Z., Hradil, D., Bezdička, P., & Hradilová, J. (2017). New data on “kerolite–pimelite” series and the colouring agent of Szklary chrysoprase, Poland. Physics and Chemistry of Minerals, 44(3), 193–202. DOI:10.1007/s00269-016-0848-z.
- Coleman, R. G. (1971). Petrologic and Geophysical Nature of Serpentinites. GSA Bulletin, 82(4), 897–918. DOI:10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2.
- Dill, H. G. (2017). Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth-Science Reviews, 165, 1–58. DOI: 10.1016/j.earscirev.2016.12.004.
- Dong, G., Morrison, G., & Jaireth, S. (1995). Quartz textures in epithermal veins, Queensland - classification, origin, and implication. Economic Geology, 90(6), 1841–1856. DOI: 10.2113/gsecongeo.90.6.1841.
- Dubińska, E. (1995). Zróżnicowanie materiału wyjściowego zwietrzeliny a rozwój laterytowych rud niklu. Przewodnik LXVI Zjazdu Polskiego Towarzystwa Geologicznego, 207–212.
- Dubińska, E., Bylina, P., Kozłowski, A., Dörr, W., Nejbert, K., Schastok, J., & Kulicki, C. (2004). U–Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203(3–4), 183–203. DOI: 10.1016/j.chemgeo.2003.10.005.
- Dubińska, E., & Gunia, P. (1997). The Sudetic ophiolite: current view on its geodynamic model. Geological Quarterly, 41, 1–20.
- Dubińska, E., Sakharov, B. A., Kaproń, G., Bylina, P., & Kozubowski, J. A. (2000). Layer silicates from Szklary (Lower Silesia): from ocean floor metamorhism to continental chemical weathering. Geologia Sudetica, 33(2), 85–105.
- Duparc, L., Molly, E., & Borloz, A. (1927). Sur la Birbiriten une nouvelle roche. Compte Rendu Des Séances de La Société de Physique et D’Histoire Naturelle de Genève, 44, 137–139.
- Elias, M. (2002). Nickel laterite deposits – geological overview, resources and exploitation. Centre for Ore Deposit Research, University of Tasmania, Hobart, Special Publication, 4, 205–220.
- Flörke, O.W., Graetsch, H., Martin, B., Röller, K., Wirth, R. (1991). Nomenclature of micro-and non-crystalline silica minerals, based on structure and microstructure. Neues Jahrbuch Mineralogie, Abhandlungen, 163, 19–42.
- Franke, W., & Żelaźniewicz, A. (2000). The eastern termination of the Variscides: terrane correlation and kinematic evolution. Geological Society, London, Special Publications, 179(1), 63–86. DOI: 10.1144/GSL.SP.2000.179.01.06.
- Frelinger, S. N., Ledvina, M. D., Kyle, J. R., & Zhao, D. (2015). Scanning electron microscopy cathodoluminescence of quartz: Principles, techniques and applications in ore geology. Ore Geology Reviews, 65, 840–852. DOI: 10.1016/j.oregeorev.2014.10.008.
- Freyssinet, PH., Butt, C. R. M., Morris, R. C., & Piantone, P. (2005). Ore-Forming Processes Related to Lateritic Weathering. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb & J. P. Richards (Eds.), One Hundredth Anniversary Volume (pp. 681–722). Society of Economic Geologists. DOI: 10.5382/AV100.21.
- Frost, B.R., & Frost, C.D. (2014). Essentials of Igneous and Metamorphic Petrology. Cambridge University Press. New York, USA.
- Gahlan, H. A., Azer, M. K., Asimow, P. D., & Al-Kahtany, K. M. (2020). Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia. Lithos, 372–373, 105679. DOI: 10.1016/J.LITHOS.2020.105679.
- Gibson, H. L., Watkinson, D. H., & Comba, C. D. A. (1983). Silicification; hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology, 78(5), 954–971. DOI: 10.2113/gsecongeo.78.5.954.
- Golightly, J. P. (2010). Progress in Understanding the Evolution of Nickel Laterites. In R. J. Goldfarb, E. E. Marsh & T. Monecke (Eds.), The Challenge of Finding New Mineral Resources, Global Metallogeny, Innovative Exploration, and New Discoveries (pp. 451-485). Society of Economic Geologists. DOI: 10.5382/SP.15.2.
- Götte, T., Pettke, T., Ramseyer, K., Koch-Muller, M., & Mullis, J. (2011). Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics. American Mineralogist, 96(5–6), 802–813. DOI: 10.2138/am.2011.3639.
- Götze, J. (2009). Chemistry, textures and physical properties of quartz — geological interpretation and technical application. Mineralogical Magazine, 73(4), 645–671. DOI: 10.1180/minmag.2009.073.4.645.
- Gunia, P. (2000). The petrology and geochemistry of mantle-derived basic and ultrabasic rocks from the Szklary Massif in the Fore-Sudetic Block (SW Poland). Geologia Sudetica, 33(2), 71–83.
- Gunia, P. (2007). Plagiogranites from the Szklary serpentinite massif, a component of the Sudetic ophiolite. Granitoids in Poland, AM Monograph, 1, 287–295.
- Halls, C., & Zhao, R. (1995). Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita, 30(3–4), 303–313. DOI: 10.1007/BF00196366.
- Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, & Sato, T. (2021). Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass‐balance approach. Resource Geology, 71(3), 255–282. DOI: 10.1111/rge.12266.
- Jedrysek, M. O., & Halas, S. (1990). The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova, 2(2), 154–159. DOI: 10.1111/j.1365-3121.1990.tb00057.x.
- Kempe, U., Möckel, R., Graupner, T., Kynicky, & Dombon, E. (2015). The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602–625. DOI: 10.1016/j.oregeorev.2014.05.003.
- Klein, F., & Garrido, C. J. (2011). Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126(3–4), 147–160. DOI: 10.1016/j.lithos.2011.07.020.
- Kryza, R., & Pin, C. (2010). The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Research, 17(2–3), 292–305. DOI: 10.1016/j.gr.2009.11.001.
- Lacinska, A. M., & Styles, M. T. (2013). Silicified serpentinite – A residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates. Geological Magazine, 150(3), 385–395. DOI: 10.1017/S0016756812000325.
- Mazur, S., Aleksandrowski, P., Kryza, R., & Oberc-Dziedzic, T. (2006). The Variscan Orogen in Poland. Geological Quarterly, 50(1), 89 – 115.
- Mazur, S., & Puziewicz, J. (1995). Mylonity strefy Niemczy. Annales Societatis Geologorum Poloniae, 64, 23–52.
- Mikulski, S. (2014). Silnie krzemionkowy zażelaziony metasomatyt (birbiryt) ze strefy zwietrzenia masywu serpentynitowego w złożu niklu w Szklarach na Dolnym Śląsku. Biuletyn Państwowego Instytutu Geologicznego, 458, 61–72.
- Moctar, D. O., Moukadiri, A., Boushaba, A., Lemine, S. O. M., & Dubois, M. (2019). Petrographical and Geochemical Characteristics of the Mauritanides Belts’ Birbirites. In D. Doronozo, E. Schingaro, J. S. Armstrong-Altrin & B. Zoheir (Eds.), Petrogenesis and Exploration of the Earth’s Interior (pp. 55–57). Springer Nature, Switzerland. DOI: 10.1007/978-3-030-01575-6_13.
- Molly, E. W. (1959). Platinum deposits of Ethiopia. Economic Geology, 54(3), 467–477. DOI: 10.2113/gsecongeo.54.3.467.
- Niśkiewicz, J. (1967). Budowa geologiczna Masywu Szklar. Rocznik Polskiego Towarzystwa Geologicznego, 37, 387–415.
- Niśkiewicz, J. (2000). Pokrywa zwietrzelinowa masywu Szklar i jej niklonośność (The Szklary Massif nickel-bearing weathering cover). Geologia Sudetica, 33(2), 107–130.
- Pieczka, A., Cooper, M. A., & Hawthorne, F. C. (2019). Lepageite, Mn32+(Fe7 3+Fe4 2+) O3[Sb5 3+As8 3+O34], a new arsenite-antimonite mineral from the Szklary pegmatite, Lower Silesia, Poland. American Mineralogist, 104(7), 1043–1050. DOI: 10.2138/am-2019-6903.
- Pieczka, A., Szuszkiewicz, A., Szełęg, E., Janeczek, J., & Nejbert, K. (2015). Granitic pegmatites of the Polish part of the Sudetes (NE Bohemian massif, SW Poland). 7th International Symposium on Granitic Pegmatites, Fieldtrip Guidebook (pp. 73–103).
- Pietranik, A., Storey, C., & Kierczak, J. (2013). The Niemcza diorites and monzodiorites (Sudetes, SW Poland): A record of changing geotectonic setting at ca. 340 Ma. Geological Quarterly , 57(2), 325–334. DOI: 10.7306/gq.1084.
- Rusk, B. (2012). Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In J. Götze & R. Möckel (Eds.), Quartz: Deposits, Mineralogy and Analytics (pp. 307–329). Springer. DOI: 10.1007/978-3-642-22161-3_14.
- Salvi, S., Fontan, F., Monchoux, P, Williams-Jones, A. E., & Moine, B. (2000). Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Economic Geology, 95(3), 559–576. DOI: 10.2113/gsecongeo.95.3.559.
- Schaltegger, U. (2007). Hydrothermal Zircon. Elements, 3(1), 51–79. DOI: 10.2113/gselements.3.1.51.
- Sherman, G. D., Kanehiro, Y., & Matsu Saka, Y. (1953). Role of dehydration in development of the laterite crust. Pacific Science, 7, 438–446.
- Spiridonov, E. M. (1991). Listvenites and zodites. International Geology Review, 33(4), 397–407. DOI:10.1080/00206819109465698.
- Ulrich, M., Cathelineau, M., Muñoz, M., Boiron, M.-C., Teitler, Y., & Karpoff, A. M. (2019). The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia. Journal of Geochemical Exploration , 197, 93–113. DOI:10.1016/j.gexplo.2018.11.017.
- Wiewióra, A. & Szpila, K. (1975). Nickel Containing Regularly Interstratified Chlorite-Saponite from Szklary, Lower Silesia, Poland. Clays and Clay Minerals , 23, 91–96. DOI: 10.1346/CCMN.1975.0230202
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-389f0754-7c19-47e5-b187-cff248d78545