PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioconversion of Waste Foolscap and Newspaper to Fermentable Sugar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this project work was to evaluate the effect of bacteria – Serratia in the enzymatic hydrolysis of Foolscap [FS] and Newspaper [NP] into fermentable or reducing sugars. The effect of temperature and hydrolysis time (number of days) on the extent of concentration of reducing sugar yield were assessed and quantified using Dinitrosalicylic acid test method (DNS). A proximate analysis was carried out on the substrate before hydrolysis. Alkaline pre-treatment using sodium hydroxide and deinking process for the removal of paper with ink for higher susceptibility of the substrate before the enzymatic hydrolysis were carried out. The temperature effect on the waste sample were analysed at 37°C, 40°C and 45°C for 7 days, it was observed that at 37°C, saccharification was higher than at 40°C and 45°C. The general observation was in that Serratia had a very good effect on the waste paper samples. A 3-D surface plot revealed that the yield of sugar increased along with the hydrolysis time (number of days), with Foolscap having the highest yield of about 21mg/ml. The comparative analysis shows that the highest yield was obtained at the temperature of 37°C, for both substrates used.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, Covenant University, P.M.B 1023, Canaan Land, Sango, Ogun State, Nigeria
  • Chemical Engineering Department, Covenant University, P.M.B 1023, Canaan Land, Sango, Ogun State, Nigeria
  • Chemical Engineering Department, Covenant University, P.M.B 1023, Canaan Land, Sango, Ogun State, Nigeria
  • Department of Biological Sciences, Covenant University, P.M.B 1023, Canaan Land, Sango, Ogun State, Nigeria
  • Department of Biochemistry, Covenant University, P.M.B 1023, Canaan Land, Sango, Ogun State, Nigeria
Bibliografia
  • 1. Ojewumi M.E., Emetere M.E., Amaefule C.V., Durodola B., Adeniyi O.D., 2019. Bioconversion of orange peel waste by escherichia coli and saccharomyces cerevisiae to ethanol. International Journal of Pharmaceutical Sciences and Research, 10(3), 1000-07.
  • 2. Ojewumi M.E., Ayomide A.A., Obanla O.M., Ojewumi E.O., 2014. Pozzolanic properties of Waste Agricultural Biomass-African Locust Bean Pod Waste. World Journal of Environmental Biosciences, 6(3), 1-7.
  • 3. Ojewumi M.E., Akwayo I.J., Taiwo O.S., Obanla O.M., Ayoola A.A., Ojewumi E.O. Oyeniyi E.A, 2018. Bio-Conversion of Sweet Potato Peel Waste to BioEthanol Using Saccharomyces Cerevisiae, International Journal of Pharmaceutical and Phytopharmacological Research, 8(3), 46-54.
  • 4. Owolabi R., Osiyemi N., Amosa M., Ojewumi M.E., 2011. Biodiesel from household/restaurant waste cooking oil (WCO). J Chem Eng Process Technol, 2(112), p. 700,000-1,000,000.
  • 5. Varotkar P., Tumane, P.M., Wasnik, D.D., 2016. Bioconversion of Waste Paper into Bio-Ethanol by Co-Culture of Fungi Isolated from Lignocellulosic Waste. International Journal of Pure and Applied Bioscience, 4(4),. 264-274,
  • 6. Ojewumi M.E., Obielue B.I., Emetere M.E., Awolu O.O., Ojewumi E.O., 2018. Alkaline Pre-Treatment and Enzymatic Hydrolysis of Waste Papers to Fermentable Sugar. Journal of Ecological Engineering, 19(1), 211-217.
  • 7. Ojewumi M.E., Emetere M.E., D.E. Babatunde, Okeniyi O.J., 2017. In-situ bioremediation of crude petroleum oil polluted soil using mathematical experimentation, International Journal of Chemical Engineering, Vol. 2017, Article ID 5184760, 11 pages, https://doi.org/10.1155/2017/5184760.
  • 8. Ojewumi M.E., Ejemen V.A., Taiwo O.S., Adekeye B.T., Awolu O.O., Ojewumi E.O., 2018. A Bioremediation Study of Raw and Treated Crude Petroleum Oil Polluted Soil with Aspergillus niger and Pseudomonas aeruginosa. Journal of Ecological Engineering, 19(2), 226-235, https://doi.org/10.12911/22998993/83564.
  • 9. Ojewumi M.E., Okeniyi J.O., Ikotun J.O., Okeniyi E.T., Ejemen V.A., Popoola A.P.I., 2018. Bioremediation: Data on Pseudomonas aeruginosa effects on the bioremediation of crude oil polluted soil. Data in Brief, 19, 101-113,
  • 10. Ojewumi M.E., Okeniyi J.O., Okeniyi E.T., Ikotun J.O., Ejemen V.A., Akinlabi E.T., 2018. Bioremediation: Data on Biologically-Mediated Remediation of Crude Oil (Escravos Light) Polluted Soil using Aspergillus niger. Chemical Data Collections, 17–18, 196–204
  • 11. Klem D., Heublein, B., Fink, H., Bahn, A., 2005. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44(22), 3358-3393.
  • 12. Roman M., Winter, W.T., 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal behavior of bacterial cellulose. Biomacromolecules, 5(5), 1671-1677.
  • 13. Uddin A.J., Araki, J., Gotoh, Y., 2011. Characterization of the poly (vinylalcohol) cellulose whiskers gel spun fibers. Composites A. Applied Science and Manufacturing, 42(7), 741-747.
  • 14. Garcia De Rodriguez N.L., Thielemans, W., 2006. Dufresne, A., Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261-270.
  • 15. Angles M.N., Dufresne, A., 2009. Plasticized starch/tunicin whiskers nanocomposites, I, Structural analysis. Macromolecules, 33(22), 8344-8353.
  • 16. Dong H., Strawhecker, K.E., Snyder, J.F, Orlicki, T.A., Reiner, R.S., Rudie, A.W., 2012. Cellulose nanocrystals as a reinforcing material forelectrospun poly (methyl methacrylate) fibers: formation, properties and nanomechanical characterization carbohydrate. Carbohydrate Polymers, 87, 2488-2495.
  • 17. Peresin M.S., Habibi, Y., Zoppe, I.O., Pawlak, J. J., Rojas, O. J., 2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules, 11(3), 674-681.
  • 18. Van Wyk J.P.H., Mogale, M.A., Moroka, K.S., 1999. Bioconversion of waste paper materials to sugars: An application illustrating the environmental benefit of enzymes. Biochemical Education, 27(4), 227-228.
  • 19. Ladish M.R.L., Voloch K.W., Tsao M., 1983. Process considerations in the enzymatic hydrolysis of biomass. Enzyme and Microbial Technol., 5(2), 82-102.
  • 20. Shleser R., 1994. Ethanol production in Hawaii: Processes, feedstock, and current economic feasibility of fuel grade ethanol production in Hawaii. Final Report. State of Hawaii, USA: Department of Business,Economic Development and Tourism. p. 1-87.
  • 21. Sibiya J.B.M., Wyk, J. P., 2016. Bioconversion of waste newspaper into fermentable sugars at different temperatures with different Aspergillus niger cellulase concentrations. Journal of Applied Biology & Biotechnology, 4(04), 69-74.
  • 22. Li Y., Zhao, X., Li, Y., Li, X., 2015. Waste incineration industry and development policies in China. Waste Management, 46, 234-241.
  • 23. Zang Y., Yue, D., Nie, Y., 2012. Greenhouse gas emissions from two stage land filling of municipal solid waste. Atmospheric Environment, 55, 139-143.
  • 24. Girisuta B., Janssen, L.P.B.M., Heeres, H.J., 2007. Kinetic study on the acid – catalyzed hydrolysis of cellulose to Levulinic acid. Industrial Engineering and Chemical Research, 46(6), 1696-1708.
  • 25. Sun Y., Yang, G., Jia, Z., Wen, C., Zhang, L., 2014. ACTA hydrolysis of corn stover using hydrochloric acid: Kinetic modelling and statistical optimization. Chemical Industry and Chemical Engineering Quarterly, 20(4), 531-539.
  • 26. Bensah E.C., Mewsah, M., 2013. Chemical pretreatment methods for ethanol: Technologies and innovation. International Journal of Chemical Engineering, 20(13), 21-40.
  • 27. Ojewumi M.E., Omoleye J.A., Ajayi A.A., 2016. Optimum fermentation temperature for the protein yield of parkia biglobosa seeds (Iyere). 3rd International Conference on African Development Issues, Covenant University, Ota, Ogun State (CUICADI 2016).
  • 28. Ojewumi M.E., Omoleye J.A., Ayoola A.A., Ajayi A.A., Adekeye B.T., Adeyemi A.O., 2018. Effects of Salting and Drying on the Deterioration Rate of Fermented Parkia biglobosa Seed. Journal of Nutritional Health & Food Engineering, 8(1), 1-5.
  • 29. Ojewumi M.E., Omoleye J.A., Ajayi A.A., 2016. The Effect of Different Starter Cultures on the Protein Content in Fermented African Locust Bean (Parkia Biglobosa) Seeds. International Journal of Engineering Research & Technology (IJERT), 5(4), 249-255.
  • 30. Ojewumi M.E., Omoleye J.A., Emetere M.E., Ayoola A.A., Obanla O.M., Babatunde D.E., Ogunbiyi A.T., Awolu O.O., Ojewumi E.O., 2018. Effect of various temperatures on the nutritional compositions of fermented African locust bean (Parkia biglobosa) seed. International Journal of Food Science and Nutrition, 3(1), 117-122.
  • 31. Ojewumi M.E., Omoleye J.A., Ajayi A.A., 2016. The Study of the Effect of Moisture Content on the Biochemical Deterioration of Stored Fermented Parkia Biglobosa Seeds. Open Journal of Engineering Research and Technology, 1(1), 14-22.
  • 32. Ojewumi M.E., Oyeyemi K.G., Emetere M.E., Okeniyi J.O., 2018. Data on the rheological behavior of cassava starch paste using different models. Data in Brief, 19, 2163-2177.
  • 33. Ojewumi M.E, Omoleye J.A. Ajayi A.A., 2017. Optimization of Fermentation Conditions for the Production of Protein Composition in Parkia biglobosa Seeds using Response Surface Methodology. International Journal of Applied Engineering Research, 12(22), 12852-12859.
  • 34. Van Wyk J., Mohulatsi M., 2003. Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresource Technology, 86(1), 21-23.
  • 35. Stancu M.M., 2017. Effect of high growth temperature on Serratia marcescens. Romanian Biotechnological Letters.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-389de2ec-d1bc-4d62-8123-9075ddcbbb01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.