PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Comparison of bacterial production in the water column between two Arctic fjords, Hornsund and Kongsfjorden (West Spitsbergen)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacterial production and the accompanying environmental factors were measured in the water columns of two Arctic fjords during the cruise in July and August 2013. Water samples were collected at six stations located in the central part of Hornsund and Kongsfjorden. In Hornsund, where average water temperatures were 1.25-fold lower than in Kongsfjorden, the bacterial production was twice as high (0.116 ± 0.102 vs 0.05 ± 0.03 mg C m−3 h−1). Statistical analysis indicated that chlorophyll a concentration itself was not a significant factor that affected bacterial production, in contrast to its decomposition product, pheophytin, originating from senescent algal cells or herbivorous activity of zooplankton. Single and multiple regression analysis revealed that water temperature, dissolved organic carbon (DOC), and pheophytin concentration were the main factors affecting bacterial production in both fjords.
Czasopismo
Rocznik
Strony
496--507
Opis fizyczny
Bibliogr. 48 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • National Marine Fisheries Research Institute, Department of Fisheries Oceanography and Marine Ecology, Gdynia, Poland
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Amann, R. I., Ludwig, W., Schleifer, K. H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 (1), 143-169.
  • [2] Bertilsson, S., Carlsson, P., Granéli, W., 2004. Influence of solar radiation on the availability of dissolved organic matter to bacteria in the Southern Ocean. Deep-Sea Res. Pt. II 51 (22), 2557-2568, http://dx.doi.org/10.1016/j.dsr2.2000.07.001.
  • [3] Boras, J. A., Sala, M. M., Arrieta, J. M., Sà, E. L., Felipe, J., Agusti, S., Duarte, C. M., Vaqué, D., 2010. Effect of ice melting on bacterial carbon fluxes channeled by viruses and protists in the Arctic Ocean. Polar Biol. 33 (12), 1695-1707, http://dx.doi.org/10.1007/s00300-010-0798-8.
  • [4] Cottier, F. R., Nilsen, F., Inall, M. E., Gerland, S., Tverberg, V., Svendsen, H., 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys. Res. Lett. 34 (10), L10607, 5 pp., http://dx.doi.org/10.1029/2007GL029948.
  • [5] Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., Griffiths, C., 2005. Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res. 110 (C12), C12005, 18 pp., http://dx.doi.org/10.1029/2004JC002757.
  • [6] De Corte, D., Sintes, E., Yokokawa, T., Herndl, G. J., 2011. Changes in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund). Environ. Microbiol. 13 (7), 1827-1841, http://dx.doi.org/10.1111/j.1462-2920.2011.02497.x.
  • [7] Divya, D. T., Krishnan, K. P., 2017. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord. Polar Sci. 11, 30-41, http://dx.doi.org/10.1016/j.polar.2016.11.004.
  • [8] Drewnik, A., Węsławski, J. M., Włodarska-Kowalczuk, M., Łącka, M., Promińska, A., Zaborska, A., Głuchowska, M., 2016. From the worm's point of view. I: Environmental settings of benthic ecosystems in Arctic fjord (Hornsund, Spitsbergen). Polar Biol. 39 (8), 1411-1424, http://dx.doi.org/10.1007/s00300-015-1867-9.
  • [9] Elifantz, H., Dittel, A. I., Cottrell, M. T., Kirchmann, D. L., 2007. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 50 (1), 39-49, http://dx.doi.org/10.3354/ame01145.
  • [10] Engel, A., Borchard, C., Piontek, J., Schulz, K. G., Riebesell, U., Bellerby, R., 2013. CO2 increases 14C primary production in an Arctic plankton community. Biogeoscience 10 (3), 1291-1308, http://dx.doi.org/10.5194/bg-10-1291-2013.
  • [11] Fuhrman, J. A., Azam, F., 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters-evaluation and field results. Mar Biol. 66 (2), 109-120, http://dx.doi.org/10.1007/BF00397184.
  • [12] Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., Kwasniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Włodarska-Kowalczuk, M., Lydersen, C., Wesławski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey, R. J. G., Lønne, O. J., Zajaczkowski, M., Falk-Petersen, S., Kendall, M., Wängberg, S.-Å., Bischof, K., Voronkov, A. Y., Kovaltchouk, N. A., Wiktor, J., Poltermann, M., di Prisco, G., Papucci, C., Gerland, S., 2002. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167-208.
  • [13] Iversen, K. R., Seuthe, L., 2011. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 34 (5), 731-749, http://dx.doi.org/10.1007/s00300-010-0929-2.
  • [14] Jankowska, K., Włodarska-Kowalczuk, M., Wieczorek, P., 2005. Abundance and biomass of bacteria in two Arctic glacial fjords. Pol. Polar Res. 26 (1), 77-84.
  • [15] Kalinowska, A., Ameryk, A., Jankowska, K., 2015. Microbiological survey in two arctic fjords: total bacterial number and biomass comparison of Hornsund and Kongsfjorden. In: Impact of Climate Changes on Marine Environments. Springer, Cham/Heidelberg/New York/Dordrecht/London, 115-126, http://dx.doi.org/10.1007/978-3-319-14283-8_9.
  • [16] Kirchman, D. L., 1992. Incorporation of thymidine and leucine in the subarctic Pacific: application to estimating bacterial production. Mar. Ecol.-Prog. Ser. 82, 301-309.
  • [17] Kirchman, D. L., K'ness, E., Hodson, R., 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural waters. Appl. Environ. Microbiol. 49, 599-607.
  • [18] Kirchman, D. L., Malmstrom, R. R., Cottrell, M. T., 2005. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep-Sea Res. Pt. II 52 (24), 3386-3395, http://dx.doi.org/10.1016/j.dsr2.2005.09.005.
  • [19] Lara, E., Arrieta, J. M., Garcia-Zarandona, I., Boras, J. A., Duarte, C. M., Agusti, S., Wassmann, P. F., Vaqué, D., 2013. Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquat. Microb. Ecol. 70, 17-32, http://dx.doi.org/10.3354/ame01636.
  • [20] Maranger, R., Vaqué, D., Nguyen, D., Hébert, M.-P., Lara, E., 2015. Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: controlling factors and potential impacts of warming. Progr. Oceanogr. 139, 221-232, http://dx.doi.org/10.1016/j.pocean.2015.07.006.
  • [21] Motegi, C., Tanaka, T., Piontek, J., Brussaard, C. P. D., Gattuso, J.-P., Weinbeuer, M. G., 2013. Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord. Biogeosciences 10, 3285-3296, http://dx.doi.org/10.5194/bg-10-3285-2013.
  • [22] Norland, S., 1993. The relationship between biomass and volume of bacteria. In: Kemp, P. F., Sherr, B. F., Sherr, E. B., Cole, J. J. (Eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publ., New York, 303-308.
  • [23] Piquet, A. M. T., Maat, D. S., Confurius-Guns, V., Sintes, E., Herndl, G. J., van de Poll, W. H., Wiencke, C., Buma, A. G. J., Bolhuis, H., 2016. Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords. Polar Biol. 39 (10), 1749-1763, http://dx.doi.org/10.1007/s00300-015-1866-x.
  • [24] Piquet, A. M. T., Scheepens, J. F., Bolhuis, H., Wiencke, C., Buma, A. G. J., 2010. Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol. 33, 1521-1536, http://dx.doi.org/10.1007/s00300-010-0841-9.
  • [25] Piwosz, K., Walkusz, W., Hapter, R., Wieczorek, P., Hop, H., Wiktor, J., 2009. Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in midsummer 2002. Polar Biol. 32 (4), 549-559, http://dx.doi.org/10.1007/s00300-008-0549-2.
  • [26] Porter, K. G., Feig, Y. S., 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25 (5), 943-948.
  • [27] Rivkin, R. B., Anderson, M. R., Lajzerowicz, C., 1996. Microbial processes in cold oceans. I. Relationship between temperature and bacterial growth rate. Aquat. Microb. Ecol. 10 (3), 243-254, http://dx.doi.org/10.3354/ame010243.
  • [28] Serreze, M. C., Walsh, J. E., Chapin III, F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W. C., Morison, J., Zhang, T., Barry, R. G., 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46 (1), 159-207, http://dx.doi.org/10.1023/A:1005504031923.
  • [29] Simon, M., Azam, F., 1989. Protein-content and protein-synthesis rates of planktonic marine-bacteria. Mar. Ecol.-Prog. Ser. 51, 201-213.
  • [30] Skagseth, Ø., Furevik, T., Ingvaldsen, R., Loeng, H., Mork, K. A., Orvik, K. A., Ozhigin, V., 2008. Volume and heat transports to the Arctic Ocean via the Norwegian and Barents Seas. In: Dickson, B., Meincke, J., Rhines, P. (Eds.), Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. Springer, Dordrecht, 45-64, http://dx.doi.org/10.1007/978-1-4020-6774-7_3.
  • [31] Smoła, Z. T., Tatarek, A., Wiktor, J., Wiktor Jr., J. M., Hapter, R., Kubiszyn, A., Węsławski, J. M., 2017. Primary producers and production in two West Spitsbergen fjords — comparison of two fjord systems (Hornsund and Kongsfjorden). Pol. Pol. Res. (accepted for publication).
  • [32] Svendsen, H., Beszczyńska-Möller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørbæk, J. B., Bischof, K., Papucci, C., Zajączkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J., Dallmann, W., 2002. The physical environment of Kongsfjorden — Krossfjorden, an Arctic fjord system in Svalbard. Polar Res. 21 (1), 133-166, http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x.
  • [33] Swerpel, S., 1985. The Hornsund fjord: water masses. Pol. Polar Res. 6, 475-496.
  • [34] Świątecki, A., 1997. Zastosowanie wskaźników bakteriologicznych w ocenie wód powierzchniowych. (Application of Bacteriological Indicators in Surficial Water Quality Assessment). WSP, Olsztyn, 105 pp.
  • [35] Urbański, J. A., Stempniewicz, L., Węsławski, J. M., Dragańska-Deja, K., Wochna, A., Goc, M., Iliszko, L., 2017. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays. Sci. Rep. 7, 43999, http://dx.doi.org/10.1038/srep43999.
  • [36] Walczowski, W., Piechura, J., 2006. New evidence of warming propagating toward the Arctic Ocean. Geophys. Res. Lett. 33 (12), 5 pp., http://dx.doi.org/10.1029/2006GL025872.
  • [37] Walczowski, W., Piechura, J., 2007. Pathways of the Greenland Sea warming. Geophys. Res. Lett. 34 (10), L10608, http://dx.doi.org/10.1029/2007GL029974.
  • [38] Walczowski, W., Piechura, J., 2011. Influence of the West Spitsbergen Current on the local climate. Int. J. Climatol. 31 (7), 1088-1093, http://dx.doi.org/10.1002/joc.2338.
  • [39] Walczowski, W., Piechura, J., Goszczko, I., Wieczorek, P., 2012. Changes of the Atlantic Water properties as an important factor of the European Arctic marine climate. ICES J. Mar. Sci. 69 (5), 864-869, http://dx.doi.org/10.1016/j.jmarsys.2016.11.005.
  • [40] Wängberg, S.-Å., Andreasson, K. I. M., Gustavson, K., Reinthaler, T., Henriksen, P., 2008. UV-B effects on microplankton communities in Kongsfjord, Svalbard — a mesocosm experiment. J. Exp. Mar. Biol. Ecol. 365 (2), 156-163, http://dx.doi.org/10.1016/j.jembe.2008.08.010.
  • [41] Warwick, R. M., Emblow, C., Feral, J. P., Hummel, H., Van Avesaath, P., Heip, C., 2003. European marine biodiversity research sites. Report of the European Concerted Action: BIOMARE. NIOO-CEME, Yerseke, The Netherlands, 136 pp.
  • [42] Welschmeyer, N. A., Coping, M., Vernet, M., Lorenzen, C. J., 1984. Diel fluctuation in zooplankton grazing rate as determined from the downward vertical flux of pheopigments. Mar. Biol. 83 (3), 263-270, http://dx.doi.org/10.1007/BF00397458.
  • [43] Węsławski, J. M., Bucholz, F., Głuchowska, M., Weydmann, A., Huenterlage, K., 2017. Ecosystem maturation follows the warming of Arctic fjords. Oceanologia 59 (4), 592-602, http://dx.doi.org/10.1016/j.oceano.2017.02.002.
  • [44] Węsławski, J. M., Jankowski, A., Kwaśniewski, S., Swerpel, S., Ryg, M., 1991. Summer hydrology and zooplankton in two Svalbard fjords. Pol. Polar Res. 12 (3), 445-460.
  • [45] Wiencke, C., Hop, H., 2016. Ecosystem Kongsfjorden: new views after more than a decade of research. Polar Biol. 39 (10), 1679-1687, http://dx.doi.org/10.1007/s00300-016-2032-9.
  • [46] Wiktor, J., Kosakowska, A., Łotocka, M., Zaborska, A., Szymczycha, B., Kwaśniewski, S., Wiktor Jr., J. M., Kubiszyn, A., 2017. Planktonic Protists of two fjords of West Spitsbergen: similarities and differences. (unpublished data).
  • [47] Zaborska, A., Włodarska-Kowalczuk, M., Legeżyńska, J., Jankowska, E., Winogradow, A., Deja, K., 2016. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords — signs of maturing of Arctic fjordic systems? (in press), J. Mar. Syst., http://dx.doi.org/10.1016/j.jmarsys.2016.11.005.
  • [48] Zengler, K., 2009. Central role of the cell in microbial ecology. Microbiol. Mol. Biol. Rev. 73 (4), 712-729, http://dx.doi.org/10.1128/MMBR.00027-09.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-389aa1e0-1767-4a1a-8bba-b47684a0a5ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.