Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flow separation control by Vortex Generators (VGs) has been analyzed over the last decades. The majority of the research concerning this technology has been focused on subsonic flows where its effectiveness for separation reduction has been proven. Less complex configurations should be analyzed as a first step to apply VGs in transonic conditions, commonly present in many aviation applications. Therefore, the numerical investigation was carried out for a Shock Wave-Boundary-Layer Interaction (SWBLI) phenomenon inducing strong flow separation at the suction side of the NACA 0012 profile. For this purpose, two kinds of VGs were analyzed: well documented Air-Jet Vortex Generators (AJVGs) and our own invention of Rod Vortex Generators (RVGs). The results of the numerical simulations based on the RANS approach reveal a large potential of this passive flow control system in delaying stall and limiting separation induced by a strong, normal shock wave terminating a local supersonic area.
Wydawca
Rocznik
Tom
Strony
167--180
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
- [1] Lin J C 2002 Progress in Aerospace Sciences 38 389
- [2] Doerffer P and Szulc O 2011 Journal of Engineering Systems Modelling and Simulation 3 (1–2)
- [3] Rimasauskiene R, Matejka M, Ostachowicz W, Kurowski M, Malinowski P, Wandowski T and Rimasauskas M 2014 Mechanical Systems and Signal Processing 50-51 607
- [4] Wallis R A 1960 A preliminary note on a modified type of air jet boundary layer control, Aeronautical Research Council, Rept. CP 513
- [5] Wallis R A and Stuart C M 1962 On the control of shock-induced boundary layer separation with discrete air jets, Aeronautical Research Council, Rept. CP 595
- [6] Rao D M and Kariya T T 1988 Boundary-layer submerged vortex generators for separation control – an exploratory study, Proceedings of the AIAA, ASME, SIAM and APS National Fluid Dynamics Congress 839
- [7] Kerho M, Hutcherson S, Blackwelder R F and Liebeck R H 1993 Journal of Aircraft 30 (3) 315
- [8] Lin J C 1999 Control of turbulent boundary-layer separation using micro-vortex generators, AIAA Paper, 99-3404
- [9] Lin J C, Robinson S K, McGhee R J and Valarezo W O 1994 Journal of Aircraft 31 (6) 1317
- [10] Klausmeyer S, Papadakis M and Lin J C 1996 A flow physics of study of vortex generators on a multi-element airfoil, AIAA Paper, 96-0548
- [11] Ashill P R and Riddle G L 1994 Control of leading-edge separation on a cambered delta wing, AGARD Report, CP-548
- [12] Langan K J and Samuels J J 1995 Experimental investigation of maneuver performance enhancements on an advanced fighter/attack aircraft, AIAA Paper, 95-0442
- [13] Ashill P R, Fulker J L and Hackett K C 2001 Research at DERA on sub boundary layer vortex generators (SBVGS), AIAA Paper, 2001-0887
- [14] Doerffer P, Flaszyński P and Szwaba R 2009 Polish Patent P. 389685
- [15] Doerffer P, Szulc O, Tejero Embuena F L and Martinez Suarez J 2014 eScience on Distributed Computing Infrastructure. Achievements of PLGrid Plus Domain-Specific Services and Tools, Bubak M, Kitowski J and Wiatr K (eds.), Springer, 8 429
- [16] Tejero Embuena F L, Doerffer P and Szulc O 2014 Journal of Physics: Conference Series 530 (1) 12067
- [17] Tejero Embuena F L, Doerffer P and Szulc O 2015 Application of passive flow control device on helicopter rotor blades, Journal of the American Helicopter Society (accepted)
- [18] Doerffer P, Hirsh C, Dussauge J P, Babinsky H and Barakos G N 2010 Unsteady effect of shock wave induced separation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer
- [19] Flaszyński P and Tejero Embuena F L 2013 RANS numerical simulation of effectiveness of vortex generators in a curved wall nozzle, IMP PAN Report No. 365/2013 (in polish)
- [20] Harris C D 1981 Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot transonic pressure tunnel, NASA Technical Memorandum, 81927
- [21] Ladson C L, Hill A S and Johnson G Jr 1987 Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, NASA Technical Memorandum, 100526
- [22] Ladson C L and Hill A S 1987 High Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, NASA Technical Memorandum, 100527
- [23] Mineck R E and Hartwich P M 1996 Effect of full-chord porosity on aerodynamic characteristics of the NACA 0012 airfoil, NASA Technical Paper, 3591
- [24] Krzysiak A 2008 AIAA Journal 46 (9) 2229
- [25] Souverein L J and Debieve J F 2010 Effect of air jet vortex generators on a shock wave boundary layer interaction, Experiments in Fluids 49 1053
- [26] Spalart P R and Allmaras S R 1992 A one-equation turbulence model for aerodynamic flows, AIAA-92-0439
- [27] McDevitt J B and Okuno A F 1985 Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility, NASA Technical Paper, 2485
- [28] Tejero Embuena F L, Doerffer P and Szulc O 2013 Effect of passive air jet vortex generator on NACA 0012 performance, Proceedings of the 5th European Conference for Aeronautics and Space Sciences
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-389a6977-77e0-4ca2-b6fb-39e13bd26223