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Abstract: Hull consistency is a known technique to improve the efficiency of iterative 
interval methods for solving nonlinear systems describing steady-states in various cir-
cuits. Presently, hull consistency is checked in a scalar manner, i.e. successively for each 
equation of the nonlinear system with respect to a single variable. In the present poster,  
a new more general approach to implementing hull consistency is suggested which con-
sists in treating simultaneously several equations with respect to the same number of 
variables. 
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1. Introduction 
 
 As is well known, determining all steady-states (stable and instable operating points) in 
nonlinear circuits (or systems) is equated to globally solving the following nonlinear system of 
n equations in n variables 

  ,0)( =xF ∈x x, (1) 

where x is a given initial interval domain (here and throughout the paper, bold-face letters de-
note interval quantities while ordinary type letters stand for real quantities). Interval methods 
[1, 2] have proved to be a reliable tool for global solution of (1). However, they suffer a se-
rious draw-back: the computer time needed may become in some cases prohibitively long, 
especially for large circuits (large n) or strong nonlinearities. 
 One of the techniques used to improve the numerical efficiency of the interval methods is 
the so-called hull consistency [3]. Presently, it is applied in a scalar manner, i.e. successively 
to each i-th equation of the system with respect to a single j-th variable; the remaining 
variables are allowed to take on their initial interval values. Thus, an attempt is made to cont-
ract the initial interval xj of the j-th variable to a narrower interval x'j. If this is the case, xj is 
replaced with x'j. The same constraint satisfaction is applied to the next (i+1)th equation with 
respect to a new variable xj+1 trying to reduce its interval xj+1 to a smaller x'j+1 interval. 
 A new more general approach is suggested here which consists in simultaneously treating 
several equations with respect to the same number of variables. It is expected that the con-
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traction effects of such a vector constraint satisfaction will be more pronounced than the 
known scalar hull consistency. 
 
 

2. The new approach  
 
 Let 1 < 'n  < n and partition x as follows: x = (ξ, p) where ξ is an 'n dimensional auxiliary 
vector formed by choosing 'n components xj of x while p is an ''n  = n – 'n  dimensional vector 
whose components are treated as parameters. To simplify the notations, it is assumed that ξ is 
made up of the first 'n components of x so p regroups the next ''n elements of x; also the vec-
tor F is partitioned into ( 'F , ''F ) where 'F involves the first 'n  equations of F. Now we con-
sider the reduced-size nonlinear system 

  xpx ′′=∈′=∈= ppF ,,0),(' ξξξ , (2) 

where ξ and p   correspond to the partition of x into ),( nn ′′′=x . Following [4 - 6], we now 
introduce the so-called outer solution xout of the nonlinear parameter system (2). If the section 

  jjj xxS ′∩= out   

is smaller than the corresponding jx′ , then jx′  is replaced by Sj Since jn′  > 1, system (2) 
imposes more stringent constraints than a single equation Fi (x) = 0 with respect to a single 
variable xj so it is expected that Sj will, in general, be a better contraction than the scalar 
contraction. The reduced intervals Sj are now substituted for the corresponding initial intervals 

jx′ in (2) and a new system (2) is formed where ξ and p regroup the next n′   components of x 
and F, respectively. This process may continue until the reduction of the intervals is con-
sidered sufficient or some intersection Sj between xj

out and jx′  becomes empty. In the latter 
case, the system of constraints is inconsistent. 
 From the view point of the new vector approach, the scalar hull consistency reduces to the 
special case where 1=′n . 
 It is seen that the core of the vector approach to hull consistency is the determination of the 
outer solution xout of (2). The latter task is solved in two stages:  
(i) the nonlinear system (2) is transformed to a linear interval parametric (LIP) system [7 - 10] 

  px ∈∈= pqpbzpqA ,),(),( , (3) 

(ii) now an outer solution  xb of (3) is found. 
 Finally, the xout is given approximately by xb.  
 

 
3. Transformation to a LIP system 

 
 System (2) is written as 

  mRppxf ⊂∈= p,0),( , (4a) 
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  '0 nRx ⊂∈ x . (4b) 

 The solution set of f is the set 

  },0),(:{:)( pp ∈== ppxfxS f .  

 Its interval hull will be denoted x*; any other interval xb containing x* is referred to as an 
outer interval solution of (4a).  
 Two methods for transforming the nonlinear system (4) to a LIP system (3) will be sug-
gested here. We first present the most popular approach among the known methods. 
 
 
3.1. Standard approach 
 It is based on the interval version of the Newton method [3]. Now (4a) is replaced with  

  ))(,()(),( xyxfpyf −+∈ pxJ , (5a) 

which becomes 

  ),())(,( pxfxy −=−pxJ , (5b) 

if (y, p) is a zero of  f.  
 A better approach is possible based on a parametric form of the interval Newton method.  
 
3.2. First method 
 The first possibility is to transform the original nonlinear system (4) into an equivalent 
linear interval parametric (LIP) system. The novel approach will be initially presented for  
a non-parametric system 

  x∈= xxf ,0)( . (6) 

 It is based on the use of the slope matrix S(y, x) and the equality  

  )(),()()( xyxySxfyf −+= , (7) 

where y and x have some fixed values (typically, x is the center xc of x). We “free” the 
components yk of y and consider them as components of a parameter vector p, i.e. 

  ),...,(),...,( 11 nnyyp xxx =∈= . (8) 

 Let  

  ),()( xpSpa ijij = , (9) 

be the entries of the parametric matrix A(p). On account of (7) to (9) 

  x∈−+∈ pxypAxfyf ),)(()()( . (10) 
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 The right-hand side of (10) is the known linear parametric approximation (LPA) of f in 
x [7]. If y is a zero of f  

  x∈−=− pxfxypA ),())(( , (11a) 

 or, equivalently 

  x∈= pxbzpA ),()( . (11b) 

 This approach has been generalized to the case of the parametric system (3) in [10]. Now, 
for a fixed p formula (7) becomes 

  )(),,(),(),( xypxySpxfpyf −+= , (12) 

where most often x = xc. Once again, we “free” the components yk of y to take on values in x. 
Thus, we introduce the additional parameter vector 

  ),,(),...,( 11 nn ...yyq xxx =∈= , (13a) 

and let 

  ),,(),( pxqSpqa ijij = , (13b) 

be the entries of the parametric matrix A(q, p), q ∈ x, p ∈ p (x is fixed). For each p ∈ p   

  px ∈∈−+∈ pqxypqAxfpyf ),(),()(),( . (14) 

If  (y, p) is a zero of f   

  px ∈∈= pqpbzpqA ,),(),( , (15) 

where z = y – x and b(p) = –f (x, p). The linear parametric system (15) is the novel LPA model 
suggested here to tackle the problem of obtaining an outer approximation of the solution set of 
(4a). It is argued that (15) is a better model that (5) to bound the solutions of (4a). Indeed, 
consider the sets 

  )}(,:{ px,J∈== JbJzzSJP , (16) 

  },),(),(:{ px ∈∈== pqpbzpqAzS pq . (17) 

 Clearly, 

  JPpq SS ⊂ , (18) 

since J (x, p) has n2 independent entries, each being an interval extension of the function 
Jij (x, p) of n + m arguments, while there are only n + m independent elements in A(q, p) and 
m independent elements in b(p). If *

JPZ , *
pqZ denote the interval hulls of SYP, Spq, respectively, 

while ZJP and Zpq are some outer enclosures, then 

  ∗∗ ⊂ jppq ZZ , (19a) 
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and hopefully 

  JPpq ZZ ⊂ , (19b) 

 (unlike (19a), (19b) is not guaranteed: it all depends on the efficiency of the methods used to 
compute ZJP and Zpq). Nowadays, there exist various methods [4, 5, 8] for computing *

pqZ  and 
Zpq (see [11] for a list of references).  
 
 
3.3. Second method 
 It is based on the use of the Hansen-Sengupta operator [3] in parametric form. The ap-
proach of § 3.2 is applicable only if the slope matrix S(q, x, p) is available in analytical form. 
If this is not the case, then the Jacobian matrix in parametric form J(q, p) can be used as 
suggested in [11]. Thus, (13a) is replaced with 

  ),...,,,...,(),( 11 mnijij ppqqJpqa = ,  mkpnkq kkkk ,...,1,,,...,1, =∈=∈ px , (20) 

 It is seen that each element aij(q, p) depends on all n + m parameters qk and pk.  
 A better LPA is possible which is based again on the Hansen-Sengupta operator. In its 
standard (non-parametric) form, it encloses each function fi (y) by the following expression 

  ),...,;,...,()()()( 11
1

njjijj

n

j
jii xxgxyxfyf +

=

−+∈ ∑ xx , (21) 

where xj+1,..., xn  are real numbers. We now write (21) in a parametric form 

  jnjjijj

n

j
jii qxxqqgxyxfyf xxq ∈∈−+∈ +

=
∑ 11111

1

,...,),,...,;,...,()()()( . (22) 

 Hence, using the Hansen-Sengupta operator, we introduce a parametric matrix A (q) with 
elements 

  jjnjjijij qxxqqgqa xxq ∈∈= + ,...,),,...,;,...,()( 1111 . (23) 

It is seen that now fractions (1/2)(1–1/n) in (22) are real parameters. This determines the better 
performance of methods based on the Hansen-Sengupta LPA as compared to those using the 
Jacobian LPA since they lead to tighter outer solutions. 
 On account of the foregoing, if S(q, p) cannot be found in analytical form, the Hansen-
Sengupta form g(q, p), should be used rather than J(q, p). In that case, the elements of the 
parametric matrix A(q, p) are given not by (20) but as follows: 

  ),...,,,...,(),( 11 mjijij ppqqJpqa = ,  jkq kk ,...1, =∈ x ,  mkp kk ,...,1, =∈ p . (23a) 

 Yet another still better option is to apply the Hansen-Sengupta approach to the whole 
vector u(q, p) which leads to a parametric matrix A(u) with components: 
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  jkuuuuugua kkmnjjijij ,...,1,),,...,;,...,()( 00
11 =∈= ++ u , (23b) 

having the least possible number of interval entries. 
 
 

4. Outer interval parametric solution 
 
4.1. Standard approach 
 So far, we have consider the problem of choosing an appropriate LPA model (13a), (15) 
or (23) of system (4). Now we proceed to presenting a new method for determining a tight 
outer interval (OI) solution of the selected LPI model which is written for simplicity in the 
form 

  p∈= ppbxpA ),()( , (24) 

 (p stands for (q, p)). The new method is based on the use of a so-called p-solution x(p) of (24) 
(recently introduced in [11]). The p-solution (parameterized solution) is given by the linear 
interval form (LIF)  

  pax ∈+= pLpp ,)( , (25) 

where L is a real n m×  matrix while a  is an n-dimensional interval vector.  
 Remark. The solution x(p) can be found by a method given in [11] which is applicable for 
the case where the components of A(p) and b(p) are linear functions of the parameter entries. 
This is, however, not a restriction since the nonlinear A(p) and b(p) can be always reduced to 
linear functions with additional parameters using a well-known technique [7]. 
 It turns out that an alternative nonlinear form p-solution can be constructed whose ith 
component 

  p∈++= pcpLpQppx iii
T

i ,)(  (26) 

is given by the quadratic interval (QI) form given in the right – hand side of (26). For 
relatively narrow p, the nonlinear p- solution will be better than its linear counterpart. 
 
4.2. Quadratic iterative method 
 In this subsection, an iterative method for determining a quadratic parametric (QP) solu-
tion x(p) will be suggested which is based on the QI form (26), from one side, and the fol-
lowing iterative process. The linear model (24) is written equivalently in the form 

  BpbpxApA +=
⎟⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−∑ 0)()0( )(μ

μ
μ , 

which is transformed into the fixed-point representation  

  )( p∈+−= pBppxpAIpx ,)()()( . (27) 
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 On the account of (27), the iterative process is   

  0)0(0)()()0()1( ,0,)()( xxBpbpxApApx =≥++
⎟⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= ∑+ κκμ

μ
μ

κ , (28) 

where A(0) = I – A0 and (assuming A0 nonsingular) x0 is the solution of (24) for p = 0. The new 
method will be referred to as QIF method. 
 Initially, the QIF method repeats the first steps κ = 0 and κ = 1 until the quadratic repre-
sentation (26) is formed. At that point, the quadratic part is, however, not literalized so the 
next step κ = 2 is started with  

  )2()2()2()2( )( iii
T

i cpLpQppx ++= . (29) 

 We now use the relationship 

  )()()()( 200)2()3( pfpBbpxpTpx =++= , (30) 

where T(p) is the bracketed expression in (28). As can be easily seen, )2(
if in (30) is a cubic 

expression which is written in the form 

  )()()()2( pRpCpf ijj
j

iji +=∑ , (31) 

where Cjj(pj) is a cubic function of one variable while Rjj(p) regroups all the other terms. Now 
each jth cubic term is approximated outwardly by a corresponding quadratic interval form so 
we get 

  )3()3()3()3()3( )( jiij
T

i cpLpQpp sq +++= . (32) 

 At the next step for κ = 3, the relationship 

  pBbpxpTpx 00)3()4( )()()( ++=  (33) 

is replaced with 

  )()()()( )3(00)3()4( pfpBbppTpx =++= q . (34) 

 Now f(3)(p) contains a cubic function which is again approximated in a quadratic manner. 
Evidently, this process of successively generating new cubic functions and their subsequent 
quadratic approximation can continue for κ ≥ 3. 

Consider the range q(κ)(p) of the corresponding QI form q(κ)(p). Clearly, q(κ)(p) is an 
interval vector having the properties 

  )()()1( pq κ⊂+kS , (35) 

where S(k+1) is the image of f(k) in p and  
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  )()( )1()( pqpq +⊂ κk . (36) 

 The distance between two such interval vectors in (36) will be assessed using  

  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−=
__

max,maxmax)( ii
iii

i
babaq ba, . (37) 

 Now we can formulate the main result of the subsection. 
 Theorem 1 Assume that the matrix A0 is non-singular and the sequence {q(∝)(p)}, κ ≥ 1 is 
convergent in the sense of (37) to a limit q(∝)(p). Then: 
(i) the interval vector 

  )()( pqx ∞=  (38) 

 is an OI solution to (1); 
(ii) the quadratic interval form 

  )()()( )(
)()( ∞∞∞ +++==

∞∞
sqx pQpLc(p)(p) ϕ , (39) 

determines a QP solution to (3); 
(iii) the matrix A(p) is non-singular for each p ∈ p. 
 On account of Theorem 1, the outer solution xb sought is given by x(k+1). The above method 
for determining the outer interval (OI) solution xb of (24) and, hence, of any of the LPA 
models (13a), (15) or (23) of system (4), using the quadratic parametric (QP) form (39) will be 
referred to as the OIQP method. 
 
 

5. Interval hull solution 
 
 A narrower interval than xb is the interval hull (IH) solution x* of (11). A method for deter-
mining x* has been proposed in [6] which is based on the linear LP-solution (25). An im-
proved version that employs the quadratic p-solution (26) is suggested here. 
 As in [11], x* is determined componentwise by computing each ],[ ***

kkk ul=x  using an 
appropriate modification of the method in [11]. We bound ourselves to the lower end of *

kl . 
 Determination of *

kl  
 The value of *

kl is found as the global solution of the following optimization problem: 

  xel T
kk min* =  (40a) 

subject to the constraint 

  p∈= ppbxpA ),()( . (40b) 

 The computational scheme for solving (40) involves two basic phases at each iteration: (i) 
find in p an upper bound u

kl  on *
kl , (ii) using u

kl  and a related constraint equation, try to re-
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duce the current domain p to a narrower domain p′ applying some constraint satisfaction 
technique. The iterations continue until the width of the current domain becomes smaller than 
a given threshold εp. 
 In [11], the above two phases were both implemented using the corresponding LP solution 
which results in a linear constraint equation. We now show that the efficiency of the method 
based on the associated iteration (28) can be improved by resorting to the related QP solution. 
Indeed, as can be easily seen, the constraint equation is now nonlinear. 
 On account of (39) (dropping the superscript (∞)) the constraint is 

  2)()(,,)( jjjj ppppLppQ(p) ==∈++= φφφ paq , (41) 

where Q is a three-dimentional n× m× m array, L and a having the same meaning (but dif-
ferent entries) as in (25). Now (41) is rewritten as 

  
000000

,02
jjkjkjjpkj ppLpQ pR ∈=++ , (42) 

where j0 is a chosen index, Rk is an interval combining the interval extensions of the remaining 
terms for j ≠ j0. Equation (42) is put in the form 

0
2 0jp b =+ + c  so 

  cc −+−=−−−= 2)2(2)1(
00

, bbpbbp jj , (43) 

if 

  2b<c . (44) 

 This approach offers better possibilities to contract the current p as compared to the known 
linear constraint technique. Indeed, now an additional contracting effect appears whenever 
(44) is violated since c involves a sum of quadratic expressions αj ϕj(pj), j ≠ j0. The resulting 
method for determining the interval hull (IH) solution using the quadratic parametric (QP) 
form will be referred to as the IHQP method. 
 
 

6. Conclusions 
 
 A new vector approach to hull consistency has been suggested which reduces, essentially, 
to determining a tight outer solution xout of the nonlinear parametric system (4). To this end, 
system (4) is first transformed to a corresponding linear parametric model in form of sy-
stems (13a), (15) or (23). Then a tight outer solution xb of the linear system chosen is com-
puted, using the OIQP method (employing the quadratic parametric form (39) and based on 
Theorem 1). A better but more expensive choice is to compute the interval hull solution x* 
using the IHQP method. 
 Future research should concentrate on the numerical implementation of the new vector 
form hull consistency, confirming experimentally its improved efficiency as compared to the 
known scalar form hull consistency. 
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