PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi control spatial history of groundwater reservoirs in Pakistan using satellite driven data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assessment of changing groundwater storage is an important factor that needs to be assessed over both time and space to understand the regional scenarios. This study has employed Geographical Temporal Weighted Regression (GTWR) along with Geographic Weighted Regression and Ordinary Least Squares to find the impact of various variables on Groundwater Storage Anomaly (GWSA). The study has made use of satellite data of gravity change, extracted using fishnet point observation to reduce processing complexity. All three methods have been compared using correlation coefficient, Akaike information criterion, and root mean squared error. Results show that GTWR, with highest R-square of 65.3 and lowest root mean square error of 0.18, is the more comprehensive option for quantifying the effect of controlling factors among its counterparts as it incorporates both spatial and temporal heterogeneity. Runoff, population density, and soil moisture are the dominant factors controlling groundwater changes with interquartile ranges of 2.35, 0.62 and 1.58 respectively, much bigger than twice the standard error. This indicates a significant effect of anthropogenic activities including rapid urbanization and increase in extraction for irrigation. Additionally, the use of GTWR led the analysis to highlight factors that influence neighboring regions. Instead of climate change and poor management of water, the alteration to the natural course of rivers has been highlighted as the biggest cause of water table decline in the region.
Czasopismo
Rocznik
Strony
423--436
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Space Science, University of the Punjab, Lahore 54590, Pakistan
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Center for Remote Sensing, University of the Punjab, Lahore 54590, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Center for Remote Sensing, University of the Punjab, Lahore 54590, Pakistan
autor
  • Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Center for Remote Sensing, University of the Punjab, Lahore 54590, Pakistan
Bibliografia
  • 1. Ali S, Liu D, Fu Q et al (2021) Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment. Remote Sensing 13:3513
  • 2. Asoka A, Mishra V (2020) A strong linkage between seasonal crop growth and groundwater storage variability in India. J Hydrometeorol 22:125–138. https://doi.org/10.1175/JHM-D-20-0085.1
  • 3. Bilal H, Govindan R, Al-Ansari T (2021) Investigation of groundwater depletion in the state of Qatar and its implication to energy water and food nexus. Water 13:2464
  • 4. Chen J, Famigliett JS, Scanlon BR, Rodell M (2016a) Groundwater storage changes : present status from GRACE observations. Surv Geophys 37:397–417. https://doi.org/10.1007/s10712-015-9332-4
  • 5. Chen Q, Mei K, Dahlgren RA et al (2016b) Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Sci Total Environ 572:450–466. https://doi.org/10.1016/J.SCITOTENV.2016.08.052
  • 6. Cuthbert MO, Gleeson T, Moosdorf N et al (2019) Global patterns and dynamics of climate – groundwater interactions. Nat Clim Chang 9:137–141. https://doi.org/10.1038/s41558-018-0386-4
  • 7. Fotheringham AS, Crespo R, Yao J (2015) Geographical and temporal weighted regression (GTWR). Geogr Anal 47:431–452. https://doi.org/10.1111/gean.12071
  • 8. Girotto M, de Lannoy GJM, Reichle RH, Rodell M (2016) Assimilation of gridded terrestrial water storage observations from GRACE into land surface model. Water Resour Res 52:4164–4183
  • 9. Guo B, Wang Y, Pei L et al (2021) Determining the effects of socioeconomic and environmental determinants on chronic obstructive pulmonary disease (COPD) mortality using geographically and temporally weighted regression model across Xi’an during 2014–2016. Sci Total Environ 756:143869. https://doi.org/10.1016/j.scitotenv.2020.143869
  • 10. Hasan E, Tarhule A (2020) GRACE: gravity recovery and climate experiment long-term trend investigation over the Nile river basin: spatial variability drivers. J Hydrol 586:124870. https://doi.org/10.1016/j.jhydrol.2020.124870
  • 11. Hasan MR, Mostafa MG, Rahman N et al (2018) Groundwater depletion and its sustainable management in Barind tract of Bangladesh. Res J Environ Sci 12:247–255. https://doi.org/10.3923/rjes.2018.247.255
  • 12. Hui W, Xin-gang Z, Ling-zhi R et al (2021) The impact of technological progress on energy intensity in China (2005–2016): evidence from a geographically and temporally weighted regression model. Energy 226:120362. https://doi.org/10.1016/j.energy.2021.120362
  • 13. Jasrotia AS, Taloor AK, Andotra U, Kumar R (2019) Monitoring and assessment of groundwater quality and its suitability for domestic and agricultural use in the Cenozoic rocks of Jammu Himalaya, India: a geospatial technology based approach. Groundw Sustain Dev 8:554–566. https://doi.org/10.1016/J.GSD.2019.02.003
  • 14. Jing W, Zhang P, Zhao X (2019) A comparison of different GRACE solutions in terrestrial water storage trend estimation oven Tibetan Plateau. Sci Rep 9:1–10
  • 15. Jyolsna PJ, Kambhammettu BVNP, Gorugantula S (2021) Application of random forest and multi-linear regression methods in downscaling GRACE derived groundwater storage changes. Hydrol Sci J 66:874–887. https://doi.org/10.1080/02626667.2021.1896719
  • 16. Kala AK, Tiwari C, Mikler AR, Atkinson SF (2017) A comparison of least squares regression and geographically weighted regression modeling of West Nile virus risk based on environmental parameters. PeerJ 5:1–18. https://doi.org/10.7717/peerj.3070
  • 17. Karunakalage A, Sarkar T, Kannaujiya S et al (2021) The appraisal of groundwater storage dwindling effect, by applying high resolution downscaling GRACE data in and around Mehsana district. Groundw Sustain Dev 13:100559. https://doi.org/10.1016/j.gsd.2021.100559
  • 18. Khorrami B, Gunduz O (2021) Evaluation of the temporal variations of groundwater storage and its interactions with climatic variables using GRACE data and hydrological models: a study from Turkey. Hydrol Process 35:1–13. https://doi.org/10.1002/hyp.14076
  • 19. Koh E, Lee E, Lee K (2020) Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination: Implications for an effective groundwater management strategy. J Environ Manage 268:110646. https://doi.org/10.1016/j.jenvman.2020.110646
  • 20. Kumari M, Sarma K, Sharma R (2019) Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens Appl Soc Environ 15:100239. https://doi.org/10.1016/j.rsase.2019.100239
  • 21. Landerer F, Michael FF, Himanshu S et al (2020) Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys Res Lett 47:e2020GL088306. https://doi.org/10.1029/2020GL088306
  • 22. Li B, Rodell M, Sheffield J et al (2019) Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models. Sci Rep 9:1–13
  • 23. Li L, Zha Y, Zhang J (2020) Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. Int J Appl Earth Obs Geoinf 90:102131. https://doi.org/10.1016/j.jag.2020.102131
  • 24. Lin M, Biswas A, Bennett EM (2020) Science of the total environment socio-ecological determinants on spatio-temporal changes of groundwater in the Yellow River Basin. China Science of the Total Environment 731:138725. https://doi.org/10.1016/j.scitotenv.2020.138725
  • 25. Mcstraw TC, Pulla ST, Jones NL et al (2021) An open-source web application for regional analysis of GRACE groundwater data and engaging stakeholders in groundwater management. J Am Water Resour Assoc. https://doi.org/10.1111/1752-1688.12968
  • 26. Meixner T, Manning AH, Stonestrom DA et al (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138. https://doi.org/10.1016/J.JHYDROL.2015.12.027
  • 27. Nanteza J, de Linage CR, Thomas BF, Famiglietti JS (2016) Monitoring groundwater storage changes in complex basement aquifers: an evaluation of the GRACE satellites over East Africa. Water Resour Res 52:9542–9564. https://doi.org/10.1002/2016WR018846.Received
  • 28. Olmos-Trujillo E, González-Trinidad J, Júnez-Ferreira H et al (2020) Spatio-temporal response of vegetation indices to rainfall and temperature in a semiarid region. Sustainability (Switzerland) 12(5):1939. https://doi.org/10.3390/su12051939
  • 29. Purdy AJ, David CH, Sikder MS et al (2019) An open-source tool to facilitate the processing of GRACE observations and GLDAS outputs: an evalutaion in Bangladesh. Front Environ Sci 7:155
  • 30. Qureshi AS (2020) Groundwater governance in Pakistan: from colossal development to neglected management. Water 12:3017
  • 31. Richey AS, Thomas BF, Lo M-H et al (2015) Uncertainty in global groundwater storage estimates in a total groundwater stress framework. Water Resour Res 51:5198–5126
  • 32. Shen X, Zhou Y, Jin S, Wang D (2020) Spatiotemporal influence of land use and household properties on automobile travel demand. Transp Res Part D 84:102359. https://doi.org/10.1016/j.trd.2020.102359
  • 33. Singh AK, Jasrotia AS, Taloor AK et al (2017) Estimation of quantitative measures of total water storage variation from GRACE and GLDAS-NOAH satellites using geospatial technology. Quatern Int 444:191–200. https://doi.org/10.1016/J.QUAINT.2017.04.014
  • 34. Singh AK, Tripathi JN, Taloor AK et al (2021) Seasonal ground water fluctuation monitoring using GRACE satellite technology over Punjab and Haryana during 2005–2015. In: Taloor AK, Kotlia BS, Kumar K (eds) Water, cryosphere, and climate change in the Himalayas. Springer, Cham, pp 175–186
  • 35. Tapley BD, Watkins MM, Flechtner F et al (2019) Contributions of GRACE to understanding climate change. Nat Clim Chang 9:358–369. https://doi.org/10.1038/s41558-019-0456-2
  • 36. Tariq MA, van de Giesen N, Janjua S et al (2020) An engineering perspective of water sharing issues in Pakistan. Water 12:477
  • 37. Thomas FB, Caineta J, Nanteza J (2017) Global assessment of groundwater sustainability based on storage anomalies. Geophys Res Lett 44:11–445. https://doi.org/10.1002/2017GL076005
  • 38. Wei Q, Zhang L, Duan W (2019) Global and geographically and temporally weighted regression models for modeling PM 2.5 in Heilongjiang, China from 2015 to 2018. Int J Environ Res Public Health 16:5107
  • 39. Xu Y, Gong H, Chen B et al (2021) Long-term and seasonal variation in groundwater storage in the North China Plain based on GRACE. Int J Appl Earth Observ Geoinform 104:102560. https://doi.org/10.1016/j.jag.2021.102560
  • 40. Yang X, Chen Y, Pacenka S et al (2015) Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J Hydrol 522:428–438. https://doi.org/10.1016/j.jhydrol.2015.01.010
  • 41. Zaveri E, Grogan DS, Fisher-vanden K et al (2016) Invisible water, visible impact: groundwater use and Indian agriculture under climate change. Environ Res Lett 11:084005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38985379-687a-4912-8d86-5162b250a301
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.