PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conducting polymer films for biodegradable metallic cardiovascular stents

Identyfikatory
Warianty tytułu
PL
Polimery przewodzące dla biodegradowalnych metalicznych materiałów na implanty
Języki publikacji
EN
Abstrakty
EN
In recent years, there is increasing interest to create biodegradable metallic cardiovascular stents instead of using their permanent form. The most interesting materials for this purpose are iron and its alloys. However, in order to use it in clinical application, their degradation rate and biological performance need to be optimized. One promising solution is coating the metal with conducting polymer films. In this work, short overview of the use of the biodegradable iron and iron modified with polypyrrole as materials for cardiovascular stents is presented.
PL
Zastosowanie biodegradowalnych, metalicznych stentów naczyniowych staje się alternatywą dla obecnie używanych ich stałych form. Długotrwała obecność metalowego stentu w tętnicy może prowadzić do powikłań, takich jak zakrzepica czy restenoza w stencie. Odrębnym problemem może być pęknięcie stentu. Dlatego też, prowadzone są badania nad ich biodegradowalnymi formami. W tym celu stosowane są aktywne metale takie, jak na przykład żelazo, których biodegradowalność oparta jest na procesie korozji. Jednak, użycie tych materiałów do zastosowań klinicznych wymaga optymalizacji ich szybkości degradacji. Obiecującym rozwiązaniem jest powlekanie powierzchni takich metali warstwami z polimerów przewodzących. W pracy przedstawiono krótki przegląd wykorzystania biodegradowalnego żelaza oraz żelaza modyfikowanego powłokami z polipirolu, jako materiałów dla stentów sercowo-naczyniowych.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics
Bibliografia
  • [1] Wache H. M., Tartakowska D. J., Hentrich A., Wagner M. H.: Development of a polymer stent with shape memory effect as a drug delivery system. In: J. Mater. Sci-Mater. M. 14 (2003) 109.
  • [2] Moravej M., Mantovani D.: Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. In: Int. J. Mol. Sci. 12(7) (2011) 4250.
  • [3] Cheng J., Huang T., Zheng Y. F.: Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites. In: J. Biomed. Mater. Res. A 102A (2014) 2277.
  • [4] Bangalore S., Toklu B., Amoroso N., Fusaro M., Kumar S., Hannan E. L., Faxon D. P., Feit F.: Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis. In: BMJ 347 (2013) 1.
  • [5] Francis A., Yuyun Y., Virtanen S., Boccaccini A. R.: Iron and iron-based alloys for temporary cardiovascular applications. In: J. Mater. Sci. – Mater. M 26 (2015) 138.
  • [6] Wu C., Qiu H., Hu X. Y., Ruan Y. M., Tian Y., Chu Y., Xu X. L., Xu L., Tang Y., Gao R. L.: Shortterm safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries. In: Chin. Med. J. 126 (2013) 4752.
  • [7] Sun D., Zheng Y., Yin T., Tang C., Yu Q., Wang G.: Coronary drug-eluting stents: From design optimization to newer strategies. In: J. Biomed. Mater. Res. A 102 (2014) 1625.
  • [8] Singer F., Ruckle D., Killian M. S., Turhan M. C., Virtanen S.: Electropolymerization and Characterization of Poly-N-methylpyrrole Coatings on AZ91D Magnesium Alloy. In: Int. J. Electrochem. Sci. 8 (2013) 11924.
  • [9] Włodarczyk K., Singer F., Jasiński P., Virtanen S.: Solid state conductivity of optimized polypyrrole coatings on iron obtained from aqueous sodium salicylate solution determined by impedance spectroscopy. In: Int. J. Electrochem. Sci. 9 (2014) 7997.
  • [10] Bai X., Tran T. H., Yu D., Vimalanandan A., Hu X., Rohwerder M.: Novel conducting polymer based composite coatings for corrosion protection of zinc. In: Corr. Sci. 95 (2015) 110.
  • [11] Cook A., Gabriel A., Laycock N.: On the mechanism of corrosion protection of mild steel with polyaniline. In: J. Electrochem. Soc. 151 (9) (2004) B529.
  • [12] Inzelt G.: Conducting Polymers, 2nd ed., Springer, 2012.
  • [13] George P. M., Lyckman A. W., LaVan D. A.: Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. In: Biomaterials 26 (2005) 3511.
  • [14] Wang L., Li X., Yang Y.: Preparation, properties and applications of polypyrroles. In: React. Funct. Polym. 47 (2001) 125.
  • [15] Vernitskaya T. V., Efimov O. N.: Polypyrrole: A conducting polymer (synthesis, properties, and applications). In: Russ. Chem. Rev. 66 (1997) 489.
  • [16] Sadki S., Schottland P., Brodie N., Sabouraud G.: The mechanisms of pyrrole electropolymerization. In: Chem. Soc. Rev. 29 (2000) 283.
  • [17] Bof Bufon C. C., Heinzel T.: Polypyrrole thin-film field-effect transistor. In: Appl. Phys. Lett. 89 (2006) 012104.
  • [18] Cysewska K., Karczewski J., Jasiński P.: Electrochemical synthesis of 3D nano-/micro-structured porous polypyrrole. In: Mat. Lett. 183 (2016) 397.
  • [19] Patois T., Sanchez J. B., Berger F., Rauch J. Y., Fievet P., Lakard B.: Ammonia gas sensors based on polypyrrole films: Influence of electrodeposition parameters. In: Sensor. Actuat. B. 431 (2012) 171.
  • [20] Turhan M. C., Weiser M., Jha H., Virtanen S.: Optimization of electrochemical polymerization parameters of polypyrrole on Mg-Al alloy (AZ91D) electrodes and corrosion performance. In: Electrochim. Acta 56 (2011) 5347.
  • [21] Tüken T.: Polypyrrole films on stainless steel. In: Surf. Coat.Tech. 200 (2006) 4713.
  • [22] Sirivisoot S., Pareta R., Webster T. J.: Electrically controlled drug release from nanostructured polypyrrole coated on titanium. In: Nanotechnology 22 (2011) 085101.
  • [23] Nguyen Thi Le H., Garcia B., Deslouis C., Le Xuan Q.: Corrosion protection and conducting polymers: polypyrrole films on iron. In: Electrochim. Acta 46 (2001) 4259.
  • [24] Cysewska K., Karczewski J., Jasiński P.: Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film. In: Electrochim. Acta 76 (2015) 156.
  • [25] Shinde V., Gaikwad A. B., Patil P. P.: Synthesis and corrosion protection study of poly(oethylaniline) coatings on copper. In: Surf. Coat. Tech. 202 (2008) 2591.
  • [26] Yağan A., Pekmez N. Ö., Yildiz A.: Investigation of protective effect of poly(N-ethylaniline) coatings on iron in various corrosive solutions. In: Surf. Coat. Tech. 201 (2007) 7339.
  • [27] Martins J. I., Bazzaoui M., Reis T. C., Bazzaoui E. A., Martins L.: Electrosynthesis of homogeneous and adherent polypyrrole coatings on iron and steel electrodes by using a new electrochemical procedure. In: Synthetic Met. 129 (2002) 221.
  • [28] Bazzaoui M., Martins J. I., Reis T. C., Bazzaoui E. A., Nunes M. C., Martins L.: Electrochemical synthesis of polypyrrole on ferrous and non-ferrous metals from sweet aqueous electrolytic medium. In: Thin Solid Films 485 (2005) 155.
  • [29] El Jaouhari A., El Asbahani A., Bouabdallaoui M., Aouzal Z., Filotás D., Bazzaoui E. A., Nagy L., Nagy G., Bazzaoui M., Albourine A. Hartman D.: Corrosion resistance and antibacterial activity of electrosynthesized polypyrrole. In: Synth. Met. 226 (2017) 15.
  • [30] Nguyen Thi Le H., Garcia B., Deslouis C., Le Xuan Q.: Corrosion protection and conducting polymers: polypyrrole films on iron. In: Electrochim. Acta 46 (2001) 4259.
  • [31] Krstajić N. V., Grgur B. N., Jovanovic S. M., Vojnovic M. V.: Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions. In: Electrochim. Acta 42 (1997) 1685.
  • [32] Grgur B.N., Krstajić N.V., Vojnović M.V., Lačnjevac Č., Gajić-Krstajić Lj.: The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions. In: Prog. Org. Coat. 33 (1998) 1.
  • [33] Cysewska K., Macia L. F., Jasiński P., Hubin A.: Tailoring the electrochemical degradation of iron protected with polypyrrole films for biodegradable cardiovascular stents. In: Electrochim. Acta 245 (2017) 327.
  • [34] Moravej A., Purnama A., Fiset M., Couet J., Mantovani D.: Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies. In: Acta Biomater. 6 (2010) 1843.
  • [35] Gu X., Zheng Y., Cheng Y., Zhong S., Xi T.: In vitro corrosion and biocompatibility of binary magnesium alloys. In: Biomater. 30 (2009) 484.
  • [36] Ateh D., Navsaria H. A., Vadgama P.: Polypyrrole-based conducting polymers and interactions with biological tissues. In: J. R. Soc. Interface 3 (2006) 741.
  • [37] Kumar A. M., Rajendran N.: Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO 2 ceramic nanocomposite coatings on 316L SS for orthopedic implants. In: Ceram. Int. 39 (2013) 5639.
  • [38] Ferraz N., Stromme M., Fellstroim B., Pradhan S., Nyholm L., Mihranyan A.: In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. In: J. Biomed. Mater. Res. A. 100A (2012) 2128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3897727d-78c6-4a15-b2a2-45ff3ed6c456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.