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Abstract. Independent Component Analysis (ICA) is a method for searching

the linear transformation that minimizes the statistical dependence between its

components. Most popular ICA methods use kurtosis as a metric of indepen-

dence (non-Gaussianity) to maximize, such as FastICA and JADE. However,

their assumption of fourth-order moment (kurtosis) may not always be satisfied

in practice. One of the possible solution is to use third-order moment (skew-

ness) instead of kurtosis, which was applied in ICASG and EcoICA. In this

paper we present a competitive approach to ICA based on the Split Generalized

Gaussian distribution (SGGD), which is well adapted to heavy-tailed as well as

asymmetric data. Consequently, we obtain a method which works better than

the classical approaches, in both cases: heavy tails and non-symmetric data.

1. Introduction

Independent component analysis (ICA) has become a standard data analysis tech-
nique applied to an array of problems in signal processing and machine learning.
The ICA techniques have an application in the magnetic resonance [1], MRI [2, 3],
EEG analysis [4–6], fault detection [7], financial time series separation [8], seismic
recordings [9] and – the most importantly – image analysis [10–19].
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(a) Original images 42049 and 220075. (b) Sum and subtraction of images.

(c) ICASGG. (d) ICASG. (e) NGPP.

(f) ICASGG. (g) ICASG. (h) NGPP.

Figure 1.: Comparison of image separation by our method (ICASGG), with ICASG

and NGPP.

Classical ICA methods were introduced in the 1980s, since then a multitude of
algorithms have been proposed for solving this problem. Most of the algorithms base
either on decomposition of various matrices, maximum likelihood optimization or
projection pursuit.

The matrix decomposition class of algorithms is represented by classic method like
JADE [20].

Second type of the ICA methods tackle the problem by the maximum likelihood
estimation. In such a case we search for the coordinate system optimally fitted to
data as well as the marginal densities such that the data density factors in the base
are the product of marginal densities. In [21], authors model skewness using the Split
Gaussian distribution, which is well adapted to asymmetric data.

The most well-known example belonging to the last type – projection pursuit –
is FastICA [22,23], method that extracts the independent components either sequen-
tially or simultaneously by maximizing kurtosis, an established measure of the non-
Gaussianity.

An assumption of the kurtotic sources may not always be satisfied in practice.
Typically data sets are bounded, and therefore the credible estimation of tails is not
that easy. Another problem with these methods, is that they usually assume that
the underlying density is symmetric, which is rarely the case. For weak-kurtosic but
skewed sources, such methods could fail [24, 25].
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Skewness (the third central moment) is another metric using in ICA. Any sym-
metric data, in particular the Gaussian one, has skewness equal to zero. One of the
most popular ICA methods dedicated for skew data is PearsonICA [26,27].

Unfortunately, all the above approaches work well only for asymmetric and weak-
kurtosic source. Our goal is to find a method which is able to work in both situations.
One of the possible solution is to use a mixture of skewness and kurtosis. In [28, 29]
authors use the projection index which is a combination of third and fourth cumu-
lants. The proposed method gives good results but it is a problem with modeling the
proportion between skewness and kurtosis.

In our work we introduce a new approach to ICA in which we approximate the data
density by product of Split Generalized Gaussian (SGG) distribution, which allows us
to simultaneously model skewness and heavy-tails in data. Thanks to Theorem 3..1
we reduce the minimization of the maximum likelihood function from five to three
parameters. Moreover, in Theorem 3..3 we give an explicit formula for gradient of the
cost function, which allows the use of classical gradient descent method. Consequently
we obtain ICA method which gives essentially better results then classical approaches
with similar computational complexity.

We verified ICASGG in the case of density estimation of images and found the
optimal parameters of Logistic, Split Gaussian, Split Generalized Gaussian distribu-
tions. In Fig. 2 we compared the values of the MLE function. In most of the cases
Split Generalized Gaussian distribution fits the data with better precision.

Figure 2.: The MLE estimation for image histograms with respect to Logistic, Split
Gaussian and Split Generalized Gaussian distributions.

The results of ICASG [25] (described in our previous article), NGPP [29] (which
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use a combination of third and fourth cumulants) and our method ICASGG are com-
pared in Fig. 1 for the case of image separation (for more detail comparison we refer
to Section 4.). In the experiment we mixed two images (see Fig. 1(a)) by adding and
subtracting them (see Fig. 1(b)). Our approach gives essentially better results. In
the case of other ICA methods we can see artifacts in the background, which means
that the method does not separate signal properly.

This paper is arranged as follows. In the next section, the theoretical background
of our approach to ICA is presented. We introduce a cost function which uses the
SGG distribution and show that it is enough to minimize it respectively to only
three parameters: vector m ∈ Rd, d × d matrix W and scalar c ∈ R. We also
calculate the gradient of the cost function, which is necessary for the efficient use in
the minimization procedure. In the third section we describe methodology behind
maximum likelihood estimation applied to SGG. We will show that the problem can
be simplified to the form of the likelihood function. The last section describes the
numerical experiments. The effects of our algorithm are illustrated on the simulated
as well as the real datasets.

2. Theoretical background

Let us first state formally the ICA problem. Given a random variable X, one want to
find an unmixing matrix, i.e. an invertible matrixW such thatWTX has independent
components. It can be done under the assumption that based component of unmixed
signals are non-Gaussian and are statistically independent from each other.

One of the possible methods for estimating the ICA solutions is maximum like-
lihood (ML) approach. The method is based on using the well-known fact that the
density F of the mixture vector X = AS can be described as

F (x) = det(W ) · f1(wT
1 x) · . . . · fd(wT

d x) for x ∈ Rd (2..1)

where W = A−1 (wi denotes the i-th column of W ) and fi denote the densities of
the independent components. Hence, if we want to find such a basis that components
become independent, we need to search for a matrixW and one-dimensional densities,
from a fixed family fi ∈ F , such that the above approximation is optimal form the
maximum likelihood point of view.

In maximum likelihood approach, we have to choose a density family F . It may
seem that the most natural choice is Gaussian densities. However, this is not the
case as Gaussian densities are affine invariant, and therefore do not “prefer” any fixed
choice of coordinates1. In other words we have to choose a family of densities which
is distant from Gaussian ones.

1 In fact one can observe that the choice of gaussian densities leads to PCA, if we restrict to the
case of orthonormal bases



29

2.1. ICA based on Split Generalized Gaussian distribution

In this section we present our density model. Natural directions for extending the
normal distribution are to introduce skewness or heavy-tails, and several proposals
have indeed emerged, both in the univariate and multivariate case, see [30–36]. One of
the most popular approaches for skewness is the Split Normal (SN) distribution [33]
and for heavy tails is the General Gaussian (GG) distribution [34–36].

In our paper we use a generalization of the above models, which we call the Split
Generalized Gaussian (SGG) distribution. We start from the one-dimensional case.
After that, we present a possible generalization of this definition to the multidimen-
sional setting, which corresponds to the formula (2..1). Contrary to the Split Gaussian
distribution, we skip the assumption of the orthogonality of coordinates (often called
principal components), and obtain an ICA model.

2.2. The one-dimensional case

Main limitations of the normal distribution are its symmetry and the fixed shape of
its tails. As it was mentioned, most ICA methods are based on the maximization of
non-Gaussianity. One of the most common and simplest parameters able to describe
deviation from normality is skewness defined as the third-order central moment of a
stochastic variable. It was found [37] that the information it can provide is equivalent
to that yielded by the combination of two empirical parameters, the “left and right
variances”.

In order to modify the Gaussian pdf to describe deviation from symmetry, the left
and right variances were proved to be easier to use than skewness [30–32]. Replacing
the variance with two different left and right variances in Gaussian pdf, gave the
asymmetric Split Gaussian model:

SN(x;m,σ2, τ2) =

{
c · exp[− 1

2σ2 (x−m)2], where x ≤ m
c · exp[− 1

2τ2σ2 (x−m)2], where x > m

where c =
√

2
πσ

−1(1 + τ)−1.

As we see, the split normal distribution arises from merging two opposite halves
of two probability density functions of normal distributions in their common mode.
In general, the use of the Split Gaussian distribution (even in 1D) allows to fit data
with better precision (from the likelihood function point of view).

Another measure of non-Gaussianity in terms of shape is represented by the kur-
tosis. The parameter is equal to three in the Gaussian case; the sharpness of the
pdf shape is higher (lower) than the corresponding Gaussian function when the pa-
rameter is larger (smaller) than three. A good model for generalized symmetric pdfs
has a variable sharpness. One of the most widely used symmetric pdf models with a
variable sharpness is the Generalized Gaussian [34,38]
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GG(x;m,α, c) =
c

2αΓ(1/c)
exp

[
−|x−m|c

αc

]
,

for m ∈ R and α, c ∈ R+ where Γ is the standard Gamma function. The parameter c,
which is theoretical (c > 0), influences the model sharpness, but cannot be estimated
directly from data samples.

The main limitation affecting the generalized Gaussian model is the symmetry.
As the left and right variances were replaced by the variance in the Gaussian pdf in
order to build the asymmetric Gaussian model, these two parameters are introduced
into the kurtosis-based generalized Gaussian pdf in a similar way, by transforming it
into the following asymmetric – Split Generalized Gaussian model:

SGG(x;m,σl, σr, c) =

{
c

(αl+αr)Γ(1/c)
exp[− |x−m|c

αc
l

] where x < m
c

(αl+αr)Γ(1/c)
exp[− |x−m|c

αc
r

] where x ≥ m

for m ∈ R and σl, σr, c ∈ R+. The relation between αl, αr and standard deviations
σl, σr is

αi = σi

√
Γ(1/c)

Γ(3/c)
, for i = l, r.

2.3. Multidimensional Split Gaussian distribution

A natural generalization of the univariate Generalized Gaussian distribution to the
multivariate settings was presented in [36]. Roughly speaking, authors assume that a
vector x ∈ Rd follows the multivariate Generalized Gaussian distribution, if its princi-
pal components are orthogonal and follow the one-dimensional Generalized Gaussian
distribution.

In this article we introduce a possible generalization of the Split Generalized Gaus-
sian distribution, but without the assumption of the orthogonality. The construction
of the model is similar to the multivariate Split Gaussian distribution presented in [25]
for ICASG method. Thanks to the use of the Split Generalized Gaussian distribution
we can model skewness and kurtosis at the same time.

Definition 2..1. A density of the multivariate Split Generalised Gaussian distribu-
tion is given by

SGGd(x;m,W, σl, σr, c) = |det(W )|
d∏

j=1

SGG(ωT
j (x−m); 0, σlj , σrj , c),

where ωj is the j-th column of non-singular matrix W , m = (m1, . . . ,md)
T , σl =

(σl1, . . . , σld), σr = (σr1, . . . , σrd) and c is a constant.

Our model is a natural generalization of the multivariate Generalized Gaussian dis-
tribution proposed in [32] and the multivariate Split Gaussian distribution described
in [25].
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The above model is flexible, and allows to fit data with greater precision. In the
next section we discuss how to estimate optimal parameters in our model.

3. Methodology

In this section we will use the maximum likelihood estimation applied to the SGG
distribution, introduced beforehand. Our goal is to maximize the likelihood function
with respect to five parameters. Apart from the classical Gaussian, in case of the Split
Generalized Gaussian distribution the MLE method comes down the optimization
problem, as stated below.

It is worth to mention, that the problem can be simplified due to the form of the
likelihood function. The core of this function can be represented by the component l,
and the MLE is equivalent to the minimization of this l . To obtain this, the gradient
method is going to be applied.

3.1. Optimization problem

We start with the problem reduction by considering the MLE only with regards to
two parameters σl and σr. This approach allows as to get the explicit formulas for
the estimators of former parameters. Consequently, it boils down the problem to the
minimization of the quite simple function of three parameters m,W and c.

Theorem 3..1. Let x1, . . . , xn be given. Then the likelihood maximized w.r.t. σl and
σr is

L̂(X; m,W, c) =

(
κn

ce

) dn
c (

|det(W )|−
c

c+1

d∏
j=1

gj(m,W )
)−n(c+1)

c

(3..1)

where κ =
[
1
cΓ(

1
c )
]−c

and

gj(m,W, c) = s
1

c+1

1j + s
1

c+1

2j ,

s1j =
∑
i∈Ij

|ωT
j (xi −m)|c, Ij = {i = 1, . . . , n : ωT

j (xi −m) ≤ 0},

s2j =
∑
i∈I′

j

|ωT
j (xi −m)|c, I ′

j = {i = 1, . . . , n : ωT
j (xi −m) > 0},

and the maximum likelihood estimators of αlj, αrj are

α̂lj = σ̂lj

√
Γ( 1c )

Γ( 3c )
and α̂rj = σ̂rj

√
Γ( 1c )

Γ( 3c )
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where the estimators of σl and σr are given by

σ̂c
lj(m,W ) = c

nβ
c
2 s

c
c+1

1j gj(m,W ), τ̂j(m,W ) =

(
s2j
s1j

) 1
c+1

and

σ̂c
rj(m,W ) = σ̂c

lj(m,W ) · τ̂ cj (m,W ) = c
nβ

c
2 s

c
c+1

2j gj(m,W ),

where β =
Γ( 3

c )

Γ( 1
c )
.

Proof. See Appendix 7..

The MLE is now reduced to the maximization of the function (3..1) of three
parameters. To solve this the gradient method was applied.

3.2. Gradient

The gradient method seems to be the one of the most common optimization methods.
This is also the method we are going to apply for our problem. To do this we calculate
the gradient of the log-likelihood function.

In the first step we introduce the auxiliary function

l(X; m,W, c) = |det(W )|−
c

c+1

d∏
j=1

gj(m,W ), (3..2)

where ωj stands for the j-th column of matrix W . Let us notice that

ln L̂(X; m,W, c) =
dn

c
ln
(κn
ce

)
− n(c+ 1)

c
ln l(X; m,W, c) (3..3)

We calculate a gradient of l and then we demonstrate the final result.

Theorem 3..2. Let X ⊂ Rd, m = (m1, . . . ,md)
T ∈ Rd, W = (ωij)1≤i,j≤d non-

singular be given. Then

∇m ln l(X; m,W, c) =

(
∂ ln l(X; m,W, c)

∂m1
, . . . ,

∂ ln l(X; m,W, c)

∂md

)T

,

where

∂ ln l(X;m,W )
∂mk

= c
c+1

d∑
j=1

1

s
1

c+1
1j +s

1
c+1
2j

·

·
(
s
− c

c+1

1j

∑
i∈Ij

|ωT
j (xi −m)|c−1ωjk − s

− c
c+1

2j

∑
i∈I

′
j

|ωT
j (xi −m)|c−1ωjk

)
.
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Moreover, ∇W ln l(X; m,W, c) =
[
∂ ln l(X;m,W,c)

∂ωpk

]
1≤p,k≤d

, where

∂ ln l(X;m,W,c)
∂ωpk

= − c
c+1 (ω

−1)Tpk + 1

s
1

c+1
1p +s

1
c+1
2p

·

·
(
− c

c+1s
− c

c+1

1p

∑
i∈Ip

|ωT
p (xi −m)|c−1(xik −mk)

+ c
c+1s

− c
c+1

2p

∑
i∈I′

p

|ωT
p (xi −m)|c−1(xik −mk)

)
.

and

s1j =
∑
i∈Ij

|ωT
j (−xi +m)|c, Ij = {i = 1, . . . , n : ωT

j (xi −m) ≤ 0},

s2j =
∑
i∈I

′
j

|ωT
j (−xi +m)|c, I

′

j = {i = 1, . . . , n : ωT
j (xi −m) > 0}.

Finally

∂ ln l(X;m,W,c)
∂c = − 1

(c+1)2 ln |det(W )|+

d∑
j=1

1

s
1

c+1
1j +s

1
c+1
2j

(
1

c+1s
− c

c+1

1j
∂s1j
∂c − s

1
c+1
1j

(c+1)2 ln s1j +
1

c+1s
− c

c+1

2j
∂s2j
∂c − s

1
c+1
2j

(c+1)2 ln s2j

)
where

∂s1j
∂c =

∑
i∈Ij

|ωT
j (xi −m)|c ln |ωT

j (xi −m)|,
∂s2j
∂c =

∑
i∈I

′
j

|ωT
j (xi −m)|c ln |ωT

j (xi −m)|.

Proof. See Appendix 8..

Now we are ready to calculate the gradient of the log-likelihood function.

Theorem 3..3. Let X ⊂ Rd, c ∈ R, m = (m1, . . . ,md)
T ∈ Rd, W = (ωij)1≤i,j≤d

non-singular be given. Then

∇m ln L̂(X; m,W, c) =

(
∂ ln L̂(X; m,W, c)

∂m1
, . . . ,

∂ ln L̂(X; m,W, c)

∂md

)T

, (3..4)

where
∂ ln L̂(X; m,W, c)

∂mk
= −n(c+ 1)

c

∂ ln l(X; m,W, c)

∂mk
. (3..5)

Moreover, ∇W ln L̂(X; m,W, c) =
[
∂ ln L̂(X;m,W,c)

∂ωpk

]
1≤p,k≤d

, where

∂ ln L̂(X; m,W, c)

∂ωpk
= −n(c+ 1)

c

∂ ln l(X; m,W, c)

∂ωpk
(3..6)

Finally ∂ ln L̂(X;m,W,c)
∂c =

dn

c2

[
ln
(ce
n

)
−1+c+ψ

(
1

c

)]
+
n

c2
ln l(X; m,W, c)−n(c+ 1)

c

∂ ln l(X; m,W, c)

∂c
(3..7)
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and ψ is the so-called digamma function, i.e. ψ(x) = Γ
′
(x)

Γ(x) .

Proof. 3..3 Recall that

ln L̂ =
dn

c
ln
(κn
ce

)
− n(c+ 1)

c
ln l

Then
∂ ln L̂
∂c = ∂A

∂c + n
c2 ln l −

n(c+1)
c

∂ ln l
∂c

where A = dn
c ln

(
κn
ce

)
. Let us calculate ∂A

∂c . Notice that

A = dn
c ln

[
n
ce

(
1
cΓ(

1
c )
)−c
]
= dn

c ln
(
n
ce

)
− dn ln

(
1
cΓ(

1
c )
)
=

dn
c ln

(
n
e

)
− dn

c ln c− dn ln Γ(1c ) + dn ln c.

Then
∂A
∂c = −dn

c2 ln
(
n
e

)
+ dn

c2 ln c− dn
c2 − dn

Γ( 1
c )
Γ

′
( 1c ) · (−

1
c2 ) +

dn
c =

dn
c2

[
ln c− 1 + c− ln(ne ) +

Γ
′
( 1
c )

Γ( 1
c )

]
.

Thanks to the above Theorem we can use gradient descent, a first-order optimiza-
tion algorithm. To find a local maximum of the cost function using gradient descent,
one takes steps proportional to the gradient of the function at the current point.

4. Experiments and analysis

To evaluate our method we will compare it with the classical one. For this purpose
we use Tucker’s congruence coefficient [39] (uncentered correlation). Its values range
between −1 and +1. This index can assess the similarity of extracted factors across
different samples. Generally, a congruence coefficient of 0.9 indicates a high degree
of factor similarity, while a coefficient of 0.95 or higher indicates that the factors are
virtually identical.

We can also verify the quality of recomputing mixing matrix. The Amari-Cichocki-
Yang (ACY) [40] error is an asymmetric measure of dissimilarity between two non-
singular square matrices. The ACY error is invariant to permutation and rescaling of
the columns (equals 0 if and only if matrices are identical up to column permutations
and rescaling).

We evaluate our method in the context of images, sound and EEG data. For this
purpose we use R packages ica [41], PearsonICA [42], ProDenICA [43], tsBSS [44],
fICA [45], ICtest [46]. The most common method used in practice is FastICA [22,23]
where negentropy is applied. To estimate it here we can use three different functions,
i.e. logcosh, exp and kurtosis. Apart from this we compare our method with algorithm
using Information-Maximization (Infomax) approach [47]. Similarly to FastICA we
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(a) Original image. (b) Original image. (c) Sum of images. (d) Subtraction of
images.

(e) ICASGG. (f) ICASGG. (g) ICASG. (h) ICASG.

(i) FastICA with
(logcosh).

(j) FastICA with
(logcosh).

(k) NGPP. (l) NGPP.

(m) JADE. (n) JADE. (o) fICA. (p) fICA.

Figure 3.: Results of image separation with the use of various ICA algorithms.

take into account three possible non-linear functions: hyperbolic tangent, logistic and
extended Infomax. Finally, we consider algorithm which applies Joint Approximate
Diagonalization of Eigenmatrices (JADE) proposed by Cardoso and Souloumiac’s
[20,23].

PearsonICA [26, 27] appears to be the one of the most popular ICA methods
dedicated for skew data. It minimizes mutual information using a Pearson [48] system-
based parametric model. Another model we consider is ProDenICA [49,50], which is
based not on a single nonlinear function, but on an entire function space of candidate
nonlinearities. In particular, the method works with the functions in a reproducing
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Figure 4.: Comparison of computational efficiency between ICASGG and classical ICA
methods (Time axis is given in the logarithmic scale).

kernel Hilbert space, and make use of the “kernel trick” to search over this space
efficiently. Finally, we compare our method with NGPP [29]. It uses the projection
index, i.e. loosely speaking a combination of third and fourth cumulants.

4.1. Computational efficiency

First, we verify the computational times of ICASGG and alternative ICA algorithms.
We examine the influence on the number of data set instances and dimension of data.

We consider the classical image separation problem, where two images are mixed
together. We use ten mixed examples and present mean evaluation times. To vary the
size of data, images are scaled to different sizes, and running times of the algorithms
are reported in each case. One can observe in Figure 4(a) that ICASGG is a little bit
slower than NGPP but gives comparable results.

To examine the influence of data dimension on the evaluation time we also take
into account the classical image separation problem, but we change the number of
components from 2 to 40. ICASGG has similar complexity as state of the art method,
see Figure 4(b). FastICA, Infomax and JADE are the most effective, but do not solve
the problem of image separation sufficiently well, see Fig. 5. On the other hand, the
ProDenICA and NGPP which give comparable results to ICASGG, have comparable
computational times.
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Figure 5.: Boxplots of ranks of ICA methods obtained by using the Tucker’s congru-
ence coefficient and Amari-Cichocki-Yang measures in the separation of images.

4.2. Separation of images

One of the most popular application of ICA is the separation of images. In our
experiments we use three hundred images from: the USC-SIPI Image Database (of
size 256×256 pixels and 512×512 pixels), and from Berkeley Segmentation Dataset of
size 482×321. We make random pairs of above images and use them as a source signal,
combined by the mixing matrix. From the practical perspective, we simply obtain two
new images by adding and dividing source pictures. Our goal is to reconstruct original
images by using only the knowledge about the mixed ones. As a summary from the
experiment, in Fig. 5 we present a boxplots of ranks obtained by the methods.

In the case of the Tucker’s congruence coefficient measure and Amari-Cichocki-
Yang error in most of the situations we observe better results. The ICASGG method
essentially better recovers original signals and as we can see in Fig. 3, ICASGG almost
perfectly recovers source signal.

4.3. Cocktail-party problem

In this subsection we consider cocktail-party problem to compare our method with
the classical ones. Imagine that you are in a room where two people are speaking
simultaneously. You have two microphones, which you hold in different locations.
The microphones give you two recorded time signals, which we could interpret as
mixed signal x. Each of these recorded signals is a weighted sum of the speech signals
emitted by the two speakers, which we denote by s. The cocktail-party problem is to
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Figure 6.: Boxplots of ranks of ICA methods obtained by using the Tucker’s con-
gruence coefficient and Amari-Cichocki-Yang measures in the case of Cocktail-party
problem.

estimate the two original speech signals.

In our experiments we use signal obtained by mixing synthetic sources2. As a
summary from the experiment, in Fig. 6 we present a boxplots of ranks obtained by
the methods. In the case of cocktail-party problem our method recovers sources signal
better or comparable to the classical methods.

4.4. EEG

At the end of this section we present how our method works in the case of EEG signals.
In this context, ICA is applied to many different problems like eye movements, blinks,
muscle, heart and line noise e.t.c. In this experiment we focus only on eye movements
and blink artifacts. The goal here is to demonstrate that our method is capable of
finding artifacts in the real EEG data. However, we emphasize that it does not provide
a complete solution to any of these practical problems. Such a solution usually entails
a significant amount of domain-specific knowledge and engineering. Nevertheless,
from these preliminary results with EEG data, we believe that the method presented
in this paper provides a reasonable solution for signal separation, which is simple and
effective enough to be easily customized for a broad range of practical problems.

For the EEG analysis, the rows of the input matrix x are the EEG signals recorded
at different electrodes, the rows of the output data matrix s = Wx are time courses
of activation of the ICA components, and the columns of the inverse matrix W give

2 We use signals from http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi.

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi
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(a) Original signal from EEG. (b) Sources signals obtained by ICASGG.

(c) Three components 9, 20, 36. (d) Original EEG signal with removed
three components 9, 20, 36.

Figure 7.: Results of ICASGGin the case of EEG data.

the projection strengths of the respective components onto scalp sensors.
One EEG data set used in the analysis was collected from 40 scalp electrodes (see

Fig. 7(a)). The second and the third ones are located very near to the eye and can
be understood as a base (we can use them for removing eye blinking artifacts). In
Fig. 7(b) we present signals obtained by ICASGG. The scale of this figure is large
but we can find the data which have spikes exactly in the same place as the two base
signals (see Fig. 7(c)). After removing selected signal and going back to the original
situation we obtain signal (see Fig. 7(d)) without eye blinking artifacts (compare Fig.
7(a) with Fig. 7(d)).

5. Conclusion

In this paper we introduce a new approach to ICA in which we approximate the
data density by product of Split Generalized Gaussian distribution, which allows
us to model at the same time skewness and heavy-tails in data. Consequently, we
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obtain ICA method which gives essentially better results than classical approaches
with slightly worse computational complexity.

We verify our approach on images, sound and EEG data. In the case of source
signal reconstructing our approach better recover original signals. The main reason
for that is the real data being usually skewed with heavy tails.
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7. Appendix A

Proof of Theorem 3..1. Let X = {x1, . . . , xn}. We write

zi =W (xi −m), zij = ωT
j (xi −m),

for observation i, where i = 1, . . . , n and coordinates j = 1, . . . , d.
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Let us consider the likelihood function, i.e.

L(X; m,W, σl, σr, c) =
n∏

i=1

SGGd(xi; m,W, σl, σr, c)

=
n∏

i=1

|det(W )|
d∏

j=1

SGG(ωT
j (xi −m); 0, σlj , σrj , c)

=
(
c1|det(W )|

)n( d∏
j=1

(σlj + σrj)
)−n

·

·
n∏

i=1

d∏
j=1

exp
[
− β

c
2

(
|zij |
σlj

1{zij≤0} +
|zij |
σrj

1{zij>0}

)c ]
,

where c1 =
(

c
Γ( 1

c )

√
β
)d

and β =
Γ( 3

c )

Γ( 1
c )
. Now we take the log-likelihood function, i.e.

ln(L(X; m,W, σl, σr, c))

= ln

((
c1|det(W )|

)n( d∏
j=1

(σlj + σrj)
)−n

)
+

n∑
i=1

d∑
j=1

[
− β

c
2

(
|zij |
σlj

1{zij≤0} +
|zij |
σrj

1{zij>0}

)c ]
= ln

((
c1|det(W )|

)n( d∏
j=1

(σlj + σrj)
)−n

)
−

β
c
2

d∑
j=1

(
σ−c
lj

∑
i∈Ij

|zij |c + σ−c
rj

∑
i∈I

′
j

|zij |c
)

= ln

((
c1|det(W )|

)n( d∏
j=1

(σlj + σrj)
)−n

)
−

β
c
2

d∑
j=1

(
σ−c
lj s1j + σ−c

rj s2j

)
.

We fix m, W , c and maximize the log-likelihood function over σl and σr. In such
a case we have to solve the following system of equations

∂ ln(L(X;m,W,σl,σr,c))
∂σlj

= − n
σlj+σrj

+ cβ
c
2σ−c−1

lj s1j = 0,

∂ ln(L(X;m,W,σl,σr,c))
∂σrj

= − n
σlj+σrj

+ cβ
c
2σ−c−1

rj s2j = 0,

for j = 1, . . . , d. By simple calculations and substituting σrj = σlj

(
s2j
s1j

) 1
c+1

= σljτ

we obtain the expressions for the estimators

σ̂c
lj(m,W ) = c

nβ
c
2 s

c
c+1

1j gj(m,W, c), τ̂j(m,W ) =

(
s2j
s1j

) 1
c+1

and

σ̂c
rj(m,W ) = σ̂c

lj(m,W ) · τ̂ cj (m,W ) = c
nβ

c
2 s

c
c+1

2j gj(m,W, c).
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Substituting it into the log-likelihood function, we get

L̂(X; m,W, c) =(
c1|det(W )|

)n( d∏
j=1

( c
n )

1
c

√
βgj(m,W )

c+1
c

)−n

· e−nd
c

=

(
ncc−1

eΓ( 1
c )

c

) dn
c (

1

|det(W )|
c

c+1

d∏
j=1

gj(m,W )
)−n(c+1)

c

=

(
κn
ce

) dn
c (

|det(W )|−
c

c+1

d∏
j=1

gj(m,W )
)−n(c+1)

c

where κ =
(

c
Γ( 1

c )

)c
.

8. Appendix B

Before we prove Theorem 3..2, we recall the following lemma.

Lemma 8..1. Let A = (aij)1≤i,j≤d be a differentiable map from real numbers to d×d
matrices then

∂det(A)

∂aij
= adjT (A)ij , (8..1)

where adj(A) stands for the adjugate of A, i.e. the transpose of the cofactor matrix.

Proof. By the Laplace expansion detA =
d∑

j=1

(−1)i+jaijMij where Mij is the minor

of the entry in the i-th row and j-th column. Hence

∂detA

∂aij
= (−1)i+jMij = adjT (A)ij .

Now we are ready to calculate the gradient of the function l.

Proof of Theorem 3..2. Let us start with the partial derivative of ln l with respect to
m. We have

∂ ln l(X;m,W,c)
∂mk

=

d∑
j=1

∂ ln(gj(m,W ))
∂mk

=
d∑

j=1

1

s
1

c+1
1j +s

1
c+1
2j

∂

(
s

1
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1j +s

1
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2j

)
∂mk

=

d∑
j=1

1

s
1

c+1
1j +s

1
c+1
2j

(
1

(c+1)s
c

c+1
1j

∂s1j
∂mk

+ 1

(c+1)s
c

c+1
2j

∂s2j
∂mk

)
.
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Now, we need
∂s1j
∂mk

and
∂s2j
∂mk

, therefore
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∂mk
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Analogously we get
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Now we calculate the partial derivative of ln l(X; m,W, c) with respect to the
matrix W . We have

∂ ln l(X;m,W,c)
∂ωpk

= ∂ ln |det(W )|−
c

c+1

∂ωpk
+

d∑
j=1

∂ ln(gj(m,W ))
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.

To calculate the derivative of the determinant we use Jacobi’s formula (see Lemma
8..1). Hence

∂ ln(det(W )
− c

c+1 )
∂ωpk

=

det(W )
c

c+1

(
− c

c+1

)
det(W )−

2c+1
c+1

∂det(W )
∂ωpk

= − c
c+1det(W )−1adjT (W )pk

= − c
c+1

1
det(W )

[
det(W )(W−1)Tpk

]
= − c

c+1 (ω
−1)Tpk,

where (ω−1)Tpk is the element in the p-th row and k-th column of the matrix (W−1)T .
Now we calculate
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where
∂s1j
∂ωpk
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∂|ωT
j (xi−m)|c

∂ωpk
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Hence we obtain Now we calculate the derivative with respect to c.
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)
+

d∑
j=1

∂ ln(gj(m,W ))
∂c =

− 1
(c+1)2 ln |det(W )|+

d∑
j=1

1

s
1

c+1
1j +s

1
c+1
2j

∂
∂c

(
s

1
c+1

1j + s
1

c+1

2j

)
=

− 1
(c+1)2 ln |det(W )|+

d∑
j=1

1

s
1

c+1
1j +s

1
c+1
2j

(
s

1
c+1

1j
∂
∂c (

1
c+1 ln s1j) + s

1
c+1

2j
∂
∂c (

1
c+1 ln s2j)

)
= − 1

(c+1)2 ln |det(W )|+
d∑

j=1

1

s
1

c+1
1j +s

1
c+1
2j

(
− s

1
c+1
1j

(c+1)2 ln s1j+

1
c+1s

− c
c+1

1j
∂s1j
∂c − s

1
c+1
2j

(c+1)2 ln s2j +
1

c+1s
− c

c+1

2j
∂s2j
∂c

)
.

where
∂s1j
∂c =

∑
i∈Ij

|ωT
j (xi −m)|c ln |ωT

j (xi −m)|,
∂s2j
∂c =

∑
i∈I

′
j

|ωT
j (xi −m)|c ln |ωT

j (xi −m)|.
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