PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the experimental observations and results of six full-scale field ballastless track structure specimens, and tested under longitudinal and transverse shear load. The tests aimed to examine the interfacial shear capacity of the continuous slab track structure and investigate the interfacial bond–slip behaviour. The results show that bond strength of the two interfaces which were on the top and bottom of mortar layer, respectively, have a large difference. Until the top interface of the mortar layer fractured, no slip displacement was observed in the bottom interface. In addition to the experimental study, a finite element model using nonlinear interface elements was employed to simulate the tests. The numerical calculated capacity agreed well with the experimental results, showing that the proposed bond–slip law is reliable. Finally, the track slab's evenness with the bond–slip effect under the dynamic load was studied.
Rocznik
Strony
485--493
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Central South University, Changsha 410075, China
  • National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, China
Bibliografia
  • [1] J. Zheng, Chinese High-Speed Railway Bridges, Higher Education Press, Beijing, 2008 (in Chinese).
  • [2] G.T. Zhao, Ballastless Track Structure for High-Speed Railway, China Railway Publishing House, Beijing, 2006(in Chinese).
  • [3] S.L. Sun, Design and Practice of High-Speed Railway Bridge, China Railway Publishing House, Beijing, 2006 (in Chinese).
  • [4] National Railway Administration of China, Code for Design of High-Speed Railway, TB10621-2014, China Railway Publishing House, Beijing, 2014 (in Chinese).
  • [5] X.L. Song, C.F. Zhao, X.J. Zhu, Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties, Science China Technological Sciences 57 (10) (2014) 1917–1924.
  • [6] P.H. Geubelle, J.S. Baylor, The impact-induced delamination of laminated composites: a 2D simulation, Composites Part B: Engineering 29 (1998) 589–602.
  • [7] C. Nitereka, K.W. Neale, Analysis of reinforced concrete beams strengthened in flexure with composite laminates, Canadian Journal of Civil Engineering 26 (5) (1999) 646–654.
  • [8] W.S. Jiang, P.Z. Qiao, An improved four-parameter model with consideration of Poisson's effect on stress analysis of adhesive joints, Engineering Structures 88 (2015) 203–215.
  • [9] Z. Achillides, K. Pilakoutas, FE modelling of bond interaction of FRP bars to concrete, Structural Concrete 7 (1) (2006) 7–16.
  • [10] Z.Y. Ouyang, G.Q. Li, Cohesive zone model based analytical solutions for adhesively bonded pipe joints under torsional loading, International Journal of Solids and Structures 46 (5) (2009) 1205–1217.
  • [11] X.N. Ma, B. Liang, F. Gao, Study on the dynamic properties of slab ballastless track and subgrade structure on high-speed railway, Journal of the China Railway Society 33 (2) (2011) 72– 78 (in Chinese).
  • [12] Q. Wang, J. Wei, R.Z. Dong, G. Xu, Fatigue behavior analysis of CRTS II slab ballastless track structure, Journal of Railway Engineering Society 31 (5) (2014) 41–47 (in Chinese).
  • [13] China Academy of Railway Sciences, Summary of Design Principles and Methods for CRTS II Ballastless Track of Beijing Tianjin Intercity Railway, China Academy of Railway Sciences, Beijing, 2008 (in Chinese).
  • [14] D.H. Deng, X.Z. Xin, Construction Technology of Mortar Layer for CRTS II Ballastless Track, China Railway Publishing House, Beijing, 2013 (in Chinese).
  • [15] K.C. Qiu, H.S. Chen, W. Sun, L. Sun, J.X. Hong, G.T. Zhao, Determination of mechanical properties of cement asphalt mortar via UPV method, Journal of Materials in Civil Engineering 26 (6) (2014) 04014009.
  • [16] J.W. Peng, D.H. Deng, Q. Yuan, Study of the rheological behavior of fresh cement emulsified asphalt paste, Construction and Building Materials 66 (2014) 348–355.
  • [17] P. Huang, D. Guo, S.Z. Wen, Interface Mechanics, Tsinghua University Press, Beijing, 2008 (in Chinese).
  • [18] M. Omidi, F. Behnamfar, A numerical model for simulation of RC beam-column connections, Engineering Structures 88 (2015) 51–73.
  • [19] H. Yuan, X. Li, Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models, Engineering Fracture Mechanics 126 (2014) 1–11.
  • [20] Q.L. Wang, J.S. Zhang, F. Men, J.H. Chen, X.B. Chen, Study on track-subgrade model of high-speed railway and dynamic loading, Journal of the China Railway Society 34 (12) (2012) 90–95 (in Chinese).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38843bca-8f38-4839-a503-20375f08034d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.