PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design of alginate microsphere formulation as a probiotics carrier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
The process of obtaining alginate microspheres (AMs) by emulsification method was optimized by applying statistical analysis software. Ten batches of microspheres were prepared using the fractional plan 3K−p . AMs were obtained with two different methods: an ultrasonic homogenization (UH) process and a rotorstator mechanical homogenization (MH). The amount of a cross-linking agent (CaCl2), calcium chloride rate addition, and the sonication amplitude (UH) or the speed of rotor rotation (MH) were selected as formulation variables. All the batches were evaluated in terms of stability and size of the alginate microspheres. Approximation profiles were developed. As a result of the conducted research, stable alginate microspheres with sizes ranging from 10 to 30 micrometres were obtained. The obtained results showed that the quality of AMs was mainly affected by the concentration and the rate of calcium chloride addition into the system. Therefore, the role of calcium ions in the mechanisms of shell structuring was discussed. Lactobacillus casei bacteria were encapsulated into the batches found to be optimum. The high encapsulation efficiency (EE ) of the bacteria (72–94%) depending on the form) and their viability over time were obtained. The model developed in the study can be effectively utilized to achieve the AMs formulations.
Rocznik
Strony
art. no. e20
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Department of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  • Lukasiewicz Research Network – Institute of Industrial Organic Chemistry, Warsaw, Poland
  • Cracow University of Technology, Department of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
  • Cracow University of Technology, Department of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • 1. Al-Abboodi A., Zhang S., Al-Saady M., Ong J.W., Chan P.P.Y., Fu J., 2019. Printing in situ tissue sealant with visible-light-crosslinked porous hydrogel. Biomed. Mater., 14, 045010. DOI: 10.1088/1748-605X/ab19fe.
  • 2. Arenales-Sierra I.M., Lobato-Calleros C., Vernon-Carter E.J., Hernández-Rodríguez L., Alvarez-Ramirez J., 2019. Calcium alginate beads loaded with Mg(OH)2 improve L. casei viability under simulated gastric condition. LWT, 112, 108220. DOI: 10.1016/j.lwt.2019.05.118.
  • 3. Asgari S., Pourjavadi A., Licht T.R., Boisen A., Ajalloueian F., 2020. Polymeric carriers for enhanced delivery of probiotics. Adv. Drug Delivery Rev., 161–162, 1–21. DOI: 10.1016/j.addr.2020.07.014.
  • 4. Bennacef C., Desobry-Banon S., Probst L., Desobry S., 2022. Optimization of core-shell capsules properties (Olive oil/alginate) obtained by dripping coextrusion process. LWT, 167, 113879. DOI: 10.1016/j.lwt.2022.113879.
  • 5. Chan E.S., Lim T.K., Voo W.P., Pogaku R., Tey B.T., Zhang Z., 2011. Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9, 228–234. DOI: 10.1016/j.partic.2010.12.002.
  • 6. Chávarri M., Marañón I., Ares R., Ibáñez F.C., Marzo F., Villarán M.C., 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol., 142, 185– 189. DOI: 10.1016/j.ijfoodmicro.2010.06.022.
  • 7. Choukaife H., Doolaanea A.A., Alfatama M., 2020. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals, 13, 335. DOI: 10.3390/ph13110335.
  • 8. Darjani P., Hosseini Nezhad M., Kadkhodaee R., Milani E., 2016. Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT, 73, 162–167. DOI: 10.1016/j.lwt.2016.05.032.
  • 9. Dhamecha D., Movsas R., Sano U., Menon J.U., 2019. Applications of alginate microspheres in therapeutics delivery and cell culture: Past. present and future. Int. J. Pharm., 569, 118627. DOI: 10.1016/j.ijpharm.2019.118627
  • 10. Farias T.G.S.D., Ladislau H.F.L., Stamford T.C.M., Medeiros J.A.C., Soares B.L.M., Stamford Arnaud T.M., Stamford T.L.M., 2019. Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. LWT, 100, 391–396. DOI: 10.1016/j.lwt.2018.10.084.
  • 11. Gomathi T., Susi S., Abirami D., Sudha P.N., 2017. Size optimization and thermal studies on calcium alginate nanoparticles. IOSR J. Pharm., 48, 1–7.
  • 12. Guimarães R.R., Vendramini A.L.A., dos Santos A.C., Leite S.G.F., Miguel M.A.L., 2013. Development of probiotic beads similar to fish eggs. J. Funct. Foods., 5, 968–973. DOI: 10.1016/j.jff.2013.01.002.
  • 13. Hayer K., 2010. The effect of ultrasound exposure on the transformation efficiency of Escherichia coli HB101. Biosci. Horiz., 3, 141–147. DOI: h10.1093/biohorizons/hzq018
  • 14. Iravani S., Korbekandi H., Mirmohammadi S.V., 2015. Technology and potential applications of probiotic encapsulation infermented milk products. J. Food Sci. Technol., 52, 4679–4696. DOI: 10.1007/s13197-014-1516-2.
  • 15. Ji R., Wu J., Zhang J., Wang T., Zhang X., Shao L., Chen D., Wang J., 2019. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology. Front. Micro-biol., 10, 1389. DOI: 10.3389/fmicb.2019.01389
  • 16. Kim J.U., Kim B., Shahbaz H.M., Lee S.H., Park D., Park J., 2017. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol., 52, 519–530. DOI: 10.1111/ijfs.13308.
  • 17. Kim S., Jeong C., Cho S., Kim S.B., 2019. Effects of thermal treatment on the physical properties of edible calcium alginate gel beads: Response surface methodological approach. Foods, 8, 578. DOI: 10.3390/foods8110578.
  • 18. Lasta E.L., da Silva Pereira Ronning E., Dekker R.F.H., da Cunha M.A.A., 2021. Encapsulation and dispersion of Lactobacillus acidophilus in a chocolate coating as a strategy for maintaining cell viability in cereal bars. Sci. Rep., 11, 20550. DOI: 10.1038/s41598-021-00077-0.
  • 19. Lebeer S., Oerlemans E., Claes I., Wuyts S., Henkens T., Spacova I., van den Broek M., Tuyaerts I., Wittouck S., De Boeck I., Allonsius C.N., Kiekens F., Lambert J., 2018. Top- ical cream with live lactobacilli modulates the skin micro-biome and reduce acne symptoms. bioRxiv. 463307. DOI: 10.1101/463307.
  • 20. Lengyel M., Kállai-Szabó N., Antal V., Laki A.J., Antal I., 2019. Microparticles. microspheres. and microcapsules for advanced drug delivery. Sci. Pharm., 87. 20. DOI: 10.3390/scipharm87030020.
  • 21. Łętocha A., Miastkowska M., Sikora E., 2022. Preparation and characteristics of alginate microparticles for food. pharma- ceutical and cosmetic applications. Polymers, 14, 3834. DOI: 10.3390/polym14183834.
  • 22. Łętocha A., Miastkowska M., Sikora E., 2023. Sposób otrzymywania mikrokapsułek zawierających bakterie probiotyczne. Patent No. P.443812.
  • 23. Li L., Fang Y., Vreeker R., Appelqvist I., Mendes E., 2007. Reexamining the egg-box model in calcium – Alginate gels with X-ray diffraction. Biomacromolecules, 8, 464–468. DOI: 10.1021/bm060550a.
  • 24. Lin S., Chen Y.-C., Chen R.-N., Chen L.-C., Ho H.-O., Tsung Y.-H., Sheu M.-T., Liu D.-Z., 2016. Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS ONE, 11, e0153685. DOI: 10.1371/journal.pone.0153685.
  • 25. Lotfipour F., Mirzaeei S., Maghsoodi M., 2012. Evaluation of the effect of CaCl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Adv. Pharm. Bull., 2, 71–78. DOI: 10.5681/apb.2012.010.
  • 26. Mao Y., Chen X., Xu B., Shen Y., Ye Z., Chaurasiya B., Liu L., Li Y., Xing X., Chen D., 2019. Eprinomectin nanoemulgel for transdermal delivery against endoparasites and ectoparasites: preparation. In vitro and in vivo evaluation. Drug Delivery., 26, 1104–1114. DOI: 10.1080/10717544.2019.1682720.
  • 27. Martău G.A., Mihai M., Vodnar D.C., 2019. The use of chitosan. alginate. and pectin in the biomedical and food sector – Biocompatibility, bioadhesiveness, and biodegradability. Polymers, 11, 1837. DOI: 10.3390/polym11111837
  • 28. Martins E., Poncelet D., Rodrigues R.C., Renard D., 2017. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J. Microencapsulation., 34, 754–771. DOI: 10.1080/02652048.2017.1403495.
  • 29. Meng X.C., Stanton C., Fitzgerald G.F., Daly C., Ross R.P., 2008. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem., 106, 1406–1416. DOI: 10.1016/j.foodchem.2007.04.076.
  • 30. Miastkowska M., Kulawik-Pióro A., Szczurek M., 2020. Nanoemulsion gel formulation optimization for burn wounds: Analysis of rheological and sensory properties. Processes, 8, 1416. DOI: 10.3390/pr8111416.
  • 31. Morgan C.A., Herman N., White P.A., Vesey G., 2006. Preservation of micro-organisms by drying; A review. J. Microbiol. Methods., 66, 183–193. DOI: 10.1016/j.mimet.2006.02.017.
  • 32. Paques J.P., 2014. Formation of alginate nanospheres. Wageningen University. Available at: https://edepot.wur.nl/287134.
  • 33. Pupa P., Apiwatsiri P., Sirichokchatchawan W., Pirarat N., Muangsin N., Shah A.A., Prapasarakul N., 2021. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci. Rep., 11, 13753. DOI: 10.1038/s41598-021-93263-z.
  • 34. Puscaselu R.G., Lobiuc A., Dimian M., Covasa M., 2020. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers, 12, 2417. DOI: 10.3390/polym12102417.
  • 35. Rather S.A., Akhter R., Masoodi F.A., Gani A., Wani S.M., 2017. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT, 83, 50–58. DOI: 10.1016/j.lwt.2017.04.036.
  • 36. Reis C.P., Neufeld R.J., Vilela S., Ribeiro A.J., Veiga F., 2006. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsulation, 23, 245–257. DOI: 10.1080/02652040500286086.
  • 37. Ryś M., Miastkowska M., Sikora E., Łętocha A., Krajewska A., Synowiec A., 2022. Bio-herbicidal potential of nanoemulsions with peppermint oil on barnyard grass and maize. Molecules,27, 3480. DOI: 10.3390/molecules27113480.
  • 38. Seyedain-Ardabili M., Sharifan A., Tarzi B.G., 2016. The production of synbiotic bread by microencapsulation. Food Technol. Biotechnol., 54, 52–59. DOI: 10.17113/ftb.54.01.16.4234.
  • 39. Shafizadeh A., Golestan L., Ahmadi M., Darjani P., Ghorbani-HasanSaraei A., 2020. Encapsulation of Lactobacillus casei in alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using flaxseed mucilage. J. Food Meas. Charact., 14, 1901–1908. DOI: 10.1007/s11694-020-00437-w.
  • 40. Shalaka D., Naik S.R., Amruta A., Parimal K., 2009. Vitamin E loaded pectin alginate microspheres for cosmetic application. J. Pharm. Res., 2, 1098–1102.
  • 41. Sheu T.Y., Marshall R.T., 1993. Microentrapment of Lactobacilli in calcium alginate gels. J. Food Sci., 58, 557–561. DOI: 10.1111/j.1365-2621.1993.tb04323.x.
  • 42. Sikora E., Miastkowska M., Lasoń E., 2020. Selected skin delivery systems. Wydawnictwo Politechniki Krakowskiej.
  • 43. Sohail A., Turner M.S., Coombes A., Bhandari B., 2013. The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioprocess Technol., 6, 2763–2769. DOI: 10.1007/s11947-012-0938-y.
  • 44. Sultana K., Godward G., Reynolds N., Arumugaswamy R., Peiris P., Kailasapathy K., 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol., 62, 47–55. DOI: 10.1016/S0168-1605(00)00380-9.
  • 45. Tang W., Liu Q., Wang X., Mi N., Wang P., Zhang J., 2008. Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. Ultrasonics, 48, 66–73. DOI: 10.1016/j.ultras.2007.10.002.
  • 46. Tønnesen H.H., Karlsen J., 2002. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 28, 621–630. DOI: 10.1081/ DDC-120003853.
  • 47. Tyagi V.V. Kaushik S.C., Tyagi S.K., Akiyama T., 2011. Development of phase change materials based microencapsulated technology for buildings: A review. Renewable Sustainable Energy Rev., 15, 1373–1391. DOI: 10.1016/j.rser.2010.10.006.
  • 48. Van Vlierberghe S., Graulus G.-J., Keshari Samal S., Van Nieuwenhove I., Dubruel P., 2014. 12 – Porous hydrogel biomedical foam scaffolds for tissue repair, In: Netti P.A. (Ed.),
  • 49. Biomedical foams for tissue engineering applications. Wood-head Publishing Limited, 335–390. DOI: 10.1533/9780857097033.2.335.
  • 50. Walczak J., Marchewka J., Laska J., 2015. Hydrogels based on ionically and covalently crosslinked alginates. Engineering of Biomaterials, 18, 17–23.
  • 51. Wang B., Wan Y., Zheng Y., Lee X., Liu T., Yu Z., Huang J., Ok Y.S., Chen J., Gao B., 2019. Alginate-based composites for environmental applications: a critical review. Crit. Rev. Env. Sci. Technol., 49, 318–356. DOI: 10.1080/10643389.2018.1547621.
  • 52. Wyrębska Ł., Szuster L., Stawska H., 2014. Synteza i aplikacja nowych pochodnych wybranych polisacharydów. Część I: Przegląd literatury. Technologia i Jakość Wyrobów, 59, 3–16.
  • 53. Yang Q., Forrest L., 2016. Drug delivery to the lymphatic system, In: Wang B., Hu L., Siahaan T.J. (Eds.), Drug delivery: Principles and applications, 2nd edition. John Wiley and Sons Inc., Hoboken, NJ, USA, 509.
  • 54. Yang M., Liang Z., Wang L., Qi M., Luo Z., Li L., 2020. Microencapsulation delivery system in food industry – challenge and the way forward. Adv. Polym. Technol., 2020, 7531810. DOI: 10.1155/2020/7531810.
  • 55. Yeo S.K., Liong M.T., 2011. Effect of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-supplemented soymilk. J. Agric. Food Chem., 59, 885–897. DOI: 10.1021/jf103974d.
  • 56. Zhai P., Chen X.B., Schreyer D.J., 2013. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Biofabrication, 5, 015009. DOI: 10.1088/1758-5082/5/1/015009.
  • 57. Zhang H., Cheng J., Ao Q., 2021. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar. Drugs., 19, 264. DOI: 10.3390/md19050264.
  • 58. Zou Q., Zhao J., Liu X., Tian F., Zhang H., Zhang H., Chen W., 2011. Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/internal gelation. Int. J. Food Sci. Technol., 46, 1672–1678. DOI: 10.1111/j.1365-2621.2011.02685.x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38822f31-c6fc-4878-9db7-fcae934c0695
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.