PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of fog on dynamic parameters of vehicles in mixed traffic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact of fog on vehicle behavior under weak-lane discipline and heterogeneous traffic – typical of Indian highways – has not been adequately explored. This study investigates vehicle dynamics under varying fog densities (visibility range: 50–1000 meters). Real-time trajectory and visibility data were extracted by a novel image processing technique from highway video footage. The analysis reveals systematic adaptations in driver behavior: in shallow fog, longitudinal speeds increase, but in dense fog, drivers exhibit more abrupt longitudinal movements, with 85th percentile acceleration and braking reaching 4 m/s². However, lateral accelerations remain below 1 m/s². This suggests that in reduced visibility, perceptual uncertainties lead to risk-prone longitudinal movements, amplifying the potential for multi-vehicle collisions. The insights from this study are directly applicable to microscopic traffic simulation models, providing values of fog-induced acceleration, deceleration, and speed values for different scenarios. For practitioners and traffic operators, the findings underline the importance of visibility-aware interventions such as dynamic speed regulation, improved road-edge delineation, and vehicle-to-infrastructure (V2I) warnings. For drivers, the study offers evidence-based reasoning for cautious longitudinal driving and establishes the risks of overestimating visibility. Overall, this research bridges a critical gap in understanding fog-related traffic dynamics under complex driving conditions.
Rocznik
Tom
Strony
183--197
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
  • Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
Bibliografia
  • 1. Wu Y., M. Abdel-aty, J. Lee. 2018. “Crash risk analysis during fog conditions using real-time traffic data”. Accident Analysis & Prevention 114: 4-11. DOI: 10.1016/j.aap.2017.05.004.
  • 2. Moore R.L., L. Cooper. 1972. Fog and Road Traffic.
  • 3. Edwards J.B. 1999. “Speed adjustment of motorway commuter traffic to inclement weather”. Transportation Research Part F: Traffic Psychology and Behaviour 2: 1-14. DOI: 10.1016/S1369-8478(99)00003-0.
  • 4. Khan M.N., A. Ghasemzadeh, M.M. Ahmed. 2018. “Investigating the impact of fog on freeway speed selection using the SHRP2 naturalistic driving study data”. Transportation Research Record: Journal of the Transportation Research Board 2672(16): 93-104. DOI: 10.1177/0361198118774748.
  • 5. Peng Y., M. Abdel-aty, J. Lee, Y. Zou. 2018. “Analysis of the impact of fog-related reduced visibility on traffic parameters”. Journal of Transportation Engineering, Part A: Systems 144: 1-8. DOI: 10.1061/jtepbs.0000094.
  • 6. Al-Ghamdi A.S. 2007. “Experimental evaluation of fog warning system”. Accident Analysis & Prevention 39: 1065-1072. DOI: 10.1016/j.aap.2005.05.007.
  • 7. Snowden R.J., N. Stimpson, R.A. Ruddle. 1998. “Fog and driving”. Nature 392(450).
  • 8. Pretto P., M. Vidal, A. Chatziastros. 2008. “Why fog increases the perceived speed”. In: Proceedings of the Driving Simulation Conference: 223-235. DSC 2008 Europe – Monaco – 31 January - 1 February 2008.
  • 9. Kim Y.-K., H. Kim, J.-W. Seo, H.-Y. An, Y.-H. Choi. 2017. “Meteorological analysis of the sea fog in winter season on Gyeonggi Bay, Yellow Sea: A case study for the 106-vehicle pileup on February 11, 2015”. Journal of Coastal Research 79: 124-128. DOI: 10.2112/SI79-026.1.
  • 10. Munigety C.R., T.V. Mathew. 2016. “Towards behavioral modeling of drivers in mixed traffic conditions”. Transportation in Developing Economies 2: 1-20. DOI: 10.1007/s40890-016-0012-y.
  • 11. Damani J., P. Vedagiri. 2021. “Safety of motorised two wheelers in mixed traffic conditions: Literature review of risk factors”. Journal of Traffic and Transportation Engineering 8: 35-56. DOI: 10.1016/j.jtte.2020.12.003.
  • 12. Pandit A., A.K. Budhkar. 2025. “Impact of fog levels on free-flow speeds in mixed traffic conditions”. Communications – Scientific Letters of the University of Žilina. DOI: 10.26552/com.C.2025.019.
  • 13. Li Q., H. Yao, X. Li. 2022. “A matched case-control method to model car-following safety”. Transportmetrica A: Transport Science 19(3). DOI: 10.1080/23249935.2022.2055198.
  • 14. Kar P., S.P. Venthuruthiyil, M. Chunchu. 2023. “Assessing the crash risk of mixed traffic on multilane rural highways using a proactive safety approach”. Accident Analysis & Prevention 188: 107099. DOI: 10.1016/j.aap.2023.107099.
  • 15. WMO G. 1996. Guide to Meteorological Instruments and Methods of Observation.
  • 16. Dumont E., V. Cavallo. 2004. “Extended photometric model of fog effects on road vision”. Transportation Research Record: Journal of the Transportation Research Board 1862: 77-81.
  • 17. Ovseník Ľ., J. Turán, P. Mišenčík, J. Bitó, L. Csurgai-Horváth. 2013. “Fog density measuring system”. Acta Electrotechnica et Informatica 12(2): 67-71. DOI: 10.2478/v10198-012-0021-7.
  • 18. Meteorological A. 2013. AMOFSG/10. Forecast Study Group.
  • 19. Hautière N., D. Aubert, E. Dumont. 2007. “Mobilized and mobilizable visibility distances for road visibility in fog”. In: Proceedings of the 26th Session of the International Commission on Illumination (CIE): 1-4. Beijing, China.
  • 20. Cavallo V. 2002. “Perceptual distortions when driving in fog”. In: Proceedings of the Conference on Traffic and Transportation Studies (ICTTS): 965-972.
  • 21. Peng Y., M. Abdel-aty, M. Lee, Y. Zou. 2018. “Analysis of the impact of fog-related reduced visibility on traffic parameters”. Journal of Transportation Engineering, Part A: Systems 144: 1-8. DOI: 10.1061/JTEPBS.0000094.
  • 22. Tu H., Z. Li, H. Li, K. Zhang, L. Sun. 2015. “Driving simulator fidelity and emergency driving behavior”. Transportation Research Record: Journal of the Transportation Research Board 2518: 113-121. DOI: 10.3141/2518-15.
  • 23. Pretto P., M. Vidal, A. Chatziastros. 2008. “Why fog increases the perceived speed”. In: Proceedings of the Driving Simulation Conference: 223-235. DSC 2008 Europe – Monaco – 31 January - 1 February 2008.
  • 24. Kocmond W.C., K. Perchonok. 1970. “Highway fog”. NCHRP Research Results Digest 15.
  • 25. Federal Highway Administration. Mitigation Strategies for Design Exceptions. Available at: https://safety.fhwa.dot.gov/geometric/pubs/mitigationstrategies/chapter3/ 3_stopdistance.cfm.
  • 26. Hoogendoorn R.G., S.P. Hoogendoorn, K.A. Brookhuis, W. Daamen. 2011. “Adaptation longitudinal driving behavior, mental workload, and psycho-spacing models in fog”. Transportation Research Record: Journal of the Transportation Research Board 2249: 20-28. DOI: 10.3141/2249-04.
  • 27. Hoogendoorn R. 2012. Empirical Research and Modeling of Longitudinal Driving Behavior Under Adverse Conditions. Delft, Netherlands: TRAIL Research School.
  • 28. Pei Y., G. Cheng. 2004. “Research on the relationship between discrete character of speed and traffic accident and speed management of freeway”. China Journal of Highway and Transport 17(1): 74-78.
  • 29. Hosseinpour M., A.S. Yahaya, A.F. Sadullah. 2014. “Exploring the effects of roadway characteristics on the frequency and severity of head-on crashes: Case studies from Malaysian Federal Roads”. Accident Analysis & Prevention 62: 209-222. DOI: 10.1016/j.aap.2013.10.001.
  • 30. Chaudhari M. 2020. “Analyzing risky behavior in traffic accidents”. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020): 464-471. DOI: 10.1109/SMC42975.2020.9283330.
  • 31. Zhao C., H. Yu, T.G. Molnar. 2023. “Safety-critical traffic control by connected automated vehicles”. Transportation Research Part C: Emerging Technologies 154: 104230. DOI: 10.1016/j.trc.2023.104230.
  • 32. Mallikarjuna C., B. Tharun, D. Pal. 2013. “Analysis of the lateral gap maintaining behavior of vehicles in heterogeneous traffic stream”. Procedia – Social and Behavioral Sciences 104: 370-379. DOI: 10.1016/j.sbspro.2013.11.130.
  • 33. Gong B., R. Wei, D. Wu, C. Lin. 2020. “Fleet management for heavy-duty vehicles and connected automated vehicles on highway in dense fog environment”. Journal of Advanced Transportation. Article ID: 8842730. DOI: 10.1155/2020/8842730.
  • 34. Brooks J.O., M.C. Crisler, N. Klein, R. Goodenough, R.W. Beeco, C. Guirl, P.J. Tyler, A. Hilpert, Y. Miller, J. Grygier, et al. 2011. “Speed choice and driving performance in simulated foggy conditions”. Accident Analysis & Prevention 43: 698-705.
  • 35. Zhang Y., Z. Guo, B. Zhu, Z. Fan, H. Zhang. 2021. “Analysis of compensatory driving behavior under fog weather conditions”. Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements: 662-668. CRC Press.
  • 36. Soria I., L. Elefteriadou, A. Kondyli. 2014. “Assessment of car-following models by driver type and under different traffic and weather conditions using data from an instrumented vehicle”. Simulation Modelling Practice and Theory 40: 208-220.
  • 37. Hammit B.E., A. Ghasemzadeh, R.M. James, M.M. Ahmed, R.K. Young. 2018. “Evaluation of weather-related freeway car-following behavior using the SHRP 2 naturalistic driving study database”. Transportation Research Part F: Traffic Psychology and Behaviour 59: 244-259.
  • 38. Jocher G., A. Chaurasia. 2023. “YOLO by Ultralytics (Version 8.0.0)”. Computer software. Available at: https://github.com/ultralytics/ultralytics.
  • 39. Tao J., H. Wang, X. Zhang, X. Li, H. Yang. 2017. “An object detection system based on YOLO in traffic scene”. In: Proceedings of the 6th International Conference on Computer Science and Network Technology (ICCSNT 2017): 1532-1536. IEEE.
  • 40. Fung G.S.K., N.H.C. Yung, G.K.H. Pang. 2003. “Camera calibration from road lane markings”. Optical Engineering 42: 2967. DOI: 10.1117/1.1606458.
  • 41. Venthuruthiyil S.P., M. Chunchu. 2018. “Trajectory reconstruction using locally weighted regression: A new methodology to identify the optimum window size and polynomial order”. Transportmetrica A: Transport Science 14: 881-900. DOI: 10.1080/23249935.2018.1449032.
  • 42. Kanagaraj V., G. Asaithambi, T. Toledo, T.C. Lee. 2015. “Trajectory data and flow characteristics of mixed traffic”. Transportation Research Record: Journal of the Transportation Research Board 2491: 1-11. DOI: 10.3141/2491-01.
  • 43. Punzo V., D.J. Formisano, V. Torrieri. 2005. “Nonstationary Kalman filter for estimation of accurate and consistent car-following data”. Transportation Research Record: Journal of the Transportation Research Board 1934(1): 3-12. DOI: 10.1177/0361198105193400101.
  • 44. Jekabsons G. 2016. Locally weighted polynomials toolbox for MATLAB/Octave. Riga, Latvia: Available at http://www.cs.rtu.lv/jekabsons.
  • 45. Indian Highway Capacity Manual: Indo-HCM. 2017. CSIR.
  • 46. Toledo T., H.N. Koutsopoulos, M. Ben-Akiva. 2007. “Integrated driving behavior modeling”. Transportation Research Part C: Emerging Technologies 15: 96-112. DOI: 10.1016/j.trc.2007.02.002.
  • 47. White L. 2011. Modeling of 85th Percentile Speed for Rural Highways for Enhanced Traffic Safety: Final Report – FHWA-OK-11-07 (January 2009): 1-25.
  • 48. Biral F., M. Da Lio, E. Bertolazzi. 2005. “Combining safety margins and user preferences into a driving criterion for optimal control-based computation of reference maneuvers for an ADAS of the next generation”. In: Proceedings of the IEEE Intelligent Vehicles Symposium: 36-41. DOI: 10.1109/IVS.2005.1505074.
  • 49. Mahapatra G., A.K. Maurya. 2018. “Dynamic parameters of vehicles under heterogeneous traffic stream with non-lane discipline: An experimental study”. Journal of Traffic and Transportation Engineering 5: 386-405. DOI: 10.1016/j.jtte.2018.01.003.
  • 50. Xu J., W. Lin, X. Wang, Y.M. Shao. 2017. “Acceleration and deceleration calibration of operating speed prediction models for two-lane mountain highways”. Journal of Transportation Engineering 143: 1-13. DOI: 10.1061/JTEPBS.0000050.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-387a10ff-11d1-430e-894e-e0f4ea0dc1b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.