PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of nominal release policies implemented in a multi-purpose water reservoir

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A water reservoir’s operation should follow a rational policy to ensure adequate water provision for different purposes without adverse effects. However, it is not well-studied how to identify operational policies currently being implemented. This study establishes a new approach to identifying nominal release policies as implemented in a multi-purpose water reservoir. We chose Bukit Merah Reservoir (BMR), located in Perak State, Malaysia, as a study site to examine its release policies for meeting irrigation, municipal, and industrial water demands and for mitigating floods and environmental hazards. The operator of BMR releases the reservoir’s water into two primary irrigation canals, the Main Canal and the Selinsing Canal. Generalized additive models (GAMs) are applied to time series data observed at BMR to identify the annual dynamics of its water management. Operational policies for the release discharges into the two primary irrigation canals are assumed to be based on information on the time-of-year and the reservoir water level. First, a backfitting algorithm identifies each contributing function of the GAMs representing the release policies. Then, spurious oscillations in the functions are removed by total variation (TV) regularization (TVR) to obtain nominal release policies, which are quite reasonable in the sense of conventional reservoir management practice. Finally, the identified nominal release policies are utilized to examine shifts in the operation of BMR during the period from 2000 through 2011. The decomposition of release policies illustrates the two aspects of the irrigation demand’s annual patterns and the hydraulic structures’ functions. The spurious oscillations removed by TVR are considered to represent indecision by the reservoir operator.
Twórcy
autor
  • Kyoto University, Graduate School of Agriculture
  • University of Mosul, College of Engineering
  • Universiti Putra Malaysia, Faculty of Engineering
autor
  • Universiti Putra Malaysia, Faculty of Engineering
  • Universiti Putra Malaysia, Faculty of Engineering
Bibliografia
  • Adib M.N.M., Harun S., 2022, Metalearning approach coupled with CMIP6 multi-GCM for future monthly streamflow forecasting, Journal of Hydrologic Engineering, 27 (6), DOI: 10.1061/(ASCE)HE.1943-5584.0002176.
  • Adib M.N.M., Harun S., Rowshon M.K., 2022, Long-term rainfall projection based on CMIP6 scenarios for Kurau River Basin of rice-growing irrigation scheme, Malaysia, SN Applied Sciences, 4 (3), DOI: 10.1007/s42452-022-04952-x.
  • Adib M.N.M., Rowshon M.K., Mojid M.A., Habibu I., 2020, Projected streamflow in the Kurau River Basin of Western Malaysia under future climate scenarios, Scientific Reports, 10 (1), DOI: 10.1038/s41598-020-65114-w.
  • Ahmad A., El-Shafie A., Razali S.F.M., Mohamad Z.S., 2014, Reservoir optimization in water resources: a review, Water Resources Management, 28 (11), 3391-3405, DOI: 10.1007/s11269-014-0700-5.
  • Alam A.H.M.B., Unami K., Fujihara M., 2018, Holistic water quality dynamics in rural artificial shallow water bodies, Journal of Environmental Management, 223, 676-684, DOI: 10.1016/j.jenvman.2018.06.076.
  • Anwar T.H.H.B.H.S., 2010, Bukit Merah Lake brief, paper presented at the National seminar on managing lakes and their basin for sustainable use: current status of selected in Malaysia.
  • Biemans H., Speelman L.H., Ludwig F., Moors E.J., Wiltshire A.J., Kumar P., Gerten D., Kabat P., 2013, Future water resources for food production in five South Asian river basins and potential for adaptation - A modeling study, Science of the Total Environment, 468-469, S117-S131, DOI: 10.1016/j.scitotenv.2013.05.092.
  • Breiman L., Friedman J.H., 1985, Estimating optimal transformations for multiple regression and correlation, Journal of the American Statistical Association, 80 (391), 580-598, DOI: 10.2307/2288473.
  • Chen R., Tsay R.S., 1993, Nonlinear additive ARX models, Journal of the American Statistical Association, 88 (423), 955-967, DOI: 10.2307/2290787.
  • DID, 2011, Review of the national water resources study (2000-2050) and formulation of national water resources policy: final report, Kuala Lumpur, Kementerian Sumber Asli Dan Alam Sekitar Malaysia, available at https://www.water.gov.my/jps/resources/PDF/Hydrology%20Publication/Vol2WaterGovernance.pdf (data access 05.10.2022).
  • Dor N., Syafalni S., Abustan I., Rahman M.T.A., Nazri M.A.A., Mostafa R., Mejus L., 2011, Verification of surface-groundwater connectivity in an irrigation canal using geophysical, water balance and stable isotope approaches, Water Resources Management, 25 (11), 2837-2853, DOI: 10.1007/s11269-011-9841-y.
  • El-Shafie A., El-Shafie A., Mukhlisin M., 2014, New approach: integrated risk-stochastic dynamic model for dam and reservoir optimization, Water Resources Management, 28 (8), 2093-2107, DOI: 10.1007/s11269-014-0596-0.
  • Fadhil R.M., 2018, Daily operation of Bukit Merah Reservoir with stochastic dynamic programming under the impact of climate change, Ph.D., Universiti Putra Malaysia, 220 pp.
  • Fadhil R.M., Rowshon M.K., Ahmad D., Fikri A., Aimrun W., 2017, A stochastic rainfall generator model for simulation of daily rainfall events in Kurau catchment: model testing, Acta Horticulturae, 1152, 1-10, DOI: 10.17660/ActaHortic.2017.1152.1.
  • Fadhil R.M., Unami K., 2021, A multi-state Markov chain model to assess drought risks in rainfed agriculture: a case study in the Nineveh Plains of Northern Iraq, Stochastic Environmental Research and Risk Assessment, 35, 1931-1951, DOI: 10.1007/s00477-021-01991-5.
  • Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D., 2007, The shuttle radar topography mission, Reviews of Geophysics, 45 (2), RG2004, DOI: 10.1029/2005RG000183.
  • Giuliani M., Herman J.D., Castelletti A., Reed P., 2014, Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management, Water Resources Research, 50 (4), 3355-3377, DOI: 10.1002/2013WR014700.
  • Hamidon N., Harun S., Malek M.A., Ismail T., Alias N., 2015, Prediction of paddy irrigation requirements by using statistical downscaling and CROPWAT models: a case study from the Kerian Irrigation Scheme in Malaysia, Jurnal Teknologi, 76 (1), 281-288. DOI: 10.11113/jt.v76.4038.
  • Heidari M., Chow V.T., Kokotovic P.V., Meredith D.D., 1971, Discrete differential dynamic programing approach to water resources systems optimization, Water Resources Research, 7 (2), 273-282, DOI: 10.1029/WR007i002p00273.
  • Ismail W.R., Najib S.A.M., 2011, Sediment and nutrient balance of Bukit Merah Reservoir, Perak (Malaysia), Lakes and Reservoirs. Science, Policy and Management for Sustainable Use, 16 (3), 179-184, DOI: 10.1111/j.1440-1770.2011.00453.x.
  • Labadie J.W., 2004, Optimal operation of multireservoir systems: state-of-the-art review, Journal of Water Resources Planning and Management, 130 (2), 93-111, DOI: 10.1061/(ASCE)0733-9496(2004)130:2(93).
  • Lee M.-H., Bae D.-H., 2015, Climate change impact assessment on green and blue water over Asian Monsoon Region, Water Resources Management, 29 (7), 2407-2427, DOI: 10.1007/s11269-015-0949-3.
  • Mereu S., Susnik J., Trabucco A., Daccache A., Vamvakeridou-Lyroudia L., Renoldi S., Virdis A., Savic D., Assimacopoulos D., 2016, Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia, Science of the Total Environment, 543, 1028-1038, DOI: 10.1016/j.scitotenv.2015.04.066.
  • Nop C., Fadhil R.M., Unami K., 2021, A multi-state Markov chain model for rainfall to be used in optimal operation of rainwater harvesting systems, Journal of Cleaner Production, 285, DOI: 10.1016/j.jclepro.2020.124912.
  • Osher S., Burger M., Goldfarb D., Xu J., Yin W., 2005, An iterative regularization method for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2), 460-489, DOI: 10.1137/040605412.
  • Overgaard N.C., 2019, On the taut string interpretation and other properties of the Rudin-Osher-Fatemi model in one dimension, Journal of Mathematical Imaging and Vision, 61 (9), 1276-1300, DOI: 10.1007/s10851-019-00905-z.
  • Rani D., Moreira M.M., 2010, Simulation-optimization modeling: a survey and potential application in reservoir systems operation, Water Resources Management, 24 (6), 1107-1138, DOI:10.1007/s11269-009-9488-0.
  • Rowshon M.K., Kwok C.Y., Lee T.S., 2003a, GIS-based scheduling and monitoring irrigation delivery for rice irrigation system: Part II. Monitoring, Agricultural Water Management, 62 (2), 117-126, DOI: 10.1016/S0378-3774(03)00093-3.
  • Rowshon M.K., Kwok C.Y., Lee T.S., 2003b, GIS-based scheduling and monitoring of irrigation delivery for rice irrigation system: Part I. Scheduling, Agricultural Water Management, 62 (2), 105-116, DOI: 10.1016/S0378-3774(03)00092-1.
  • Rudin L.I., Osher S., Fatemi E., 1992, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1-4), 259-268, DOI: 10.1016/0167-2789(92)90242-F.
  • Tejada-Guibert J.A., Johnson S.A., Stedinger J.R., 1993, Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming, Water Resources Research, 29 (12), 3969-3980, DOI: 10.1029/93WR02277.
  • Tejada-Guibert J.A., Johnson S.A., Stedinger J.R., 1995, The value of hydrologic information in stochastic dynamic programming models of a multireservoir system, Water Resources Research, 31 (10), 2571-2579, DOI: 10.1029/95WR02172.
  • Turner S.W.D., Steyaert J.C., Condon L., Voisin N., 2021, Water storage and release policies for all large reservoirs of conterminous United States, Journal of Hydrology, 603, DOI: 10.1016/j.jhydrol.2021.126843.
  • Unami K., Fadhil R.M., Kamal M.R., 2021, Rainfall-runoff models with fractional derivatives applied to Kurau River Basin, Perak, Malaysia, Basrah Journal of Agricultural Sciences, 34 (1), 34-40, DOI: 10.37077/25200860.2021.34.sp1.4.
  • Unami K., Fadhil R.M., Rowshon M.K., 2019a, Generalized additive models for water balance in Bukit Merah Reservoir, Perak, Malaysia, [in:] The 2019 International Symposium on Nonlinear Theory and Its Applications (NOLTA2019), Kuala Lumpur, Malaysia, 9025.
  • Unami K., Mohawesh, O., 2018, A unique value function for an optimal control problem of irrigation water intake from a reservoir harvesting flash floods, Stochastic Environmental Research and Risk Assessment, 32 (11), 3169-3182, DOI: 10.1007/s00477-018-1527-z.
  • Unami K., Mohawesh O., Fadhil R.M., 2019b, Time periodic optimal policy for operation of a water storage tank using the dynamic programming approach, Applied Mathematics and Computation, 353, 418-431, DOI: 10.1016/j.amc.2019.02.005.
  • Wałęga A., Młyński D., Radecki-Pawlik A., 2020, The influences of meteorological and hydrological factors on the operation and performance of a semi-natural stormwater reservoir, Meteorology Hydrology and Water Management, 8 (1), 28-34, DOI: 10.26491/mhwm/111032.
  • Yaegashi Y., Yoshioka H., Unami K., Fujihara M., 2018, A singular stochastic control model for sustainable population management of the fish-eating waterfowl Phalacrocorax carbo, Journal of Environmental Management, 219, 18-27, DOI: 10.1016/j.jenvman.2018.04.099.
  • Yakowitz S., 1982, Dynamic programming applications in water resources, Water Resources Research, 18 (4), 673-696, DOI: 10.1029/WR018i004p00673.
  • Yang T., Tan Z., 2018, Backfitting algorithms for total-variation and empirical-norm penalized additive modelling with highdimensional data, Stat, 7 (1), DOI: 10.1002/sta4.198.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38796c47-5584-4794-98ec-d3b729f3a222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.