PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Performance of a Vibrating Machine for Cleaning Contamination of Machine Parts with a Submersed Pulsating Jeam with Solid Particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents an innovative design of a vibrating machine for cleaning pollution with a pulsating immersed jet with solid particles and analytically obtained the dependence of the mass productivity of the machine on the design parameters of the machine and the modes of operation of the vibration drive. The research results show that the optimal oscillation frequency of the machine drive lies in the range from 13 to 14 Hz with an amplitude of oscillations of 2 mm and a ratio of the diameter of the nozzle to the diameter of the pulsation chamber of 1:10. The conducted studies of the effectiveness of cleaning showed that mass wear of metal balls and changes in the roughness of the base of the sample are practically not observed due to the occurrence of minor stresses on the surface of the sample elastic character. As a result of the study of the efficiency of cleaning model pollution, it was found that increasing the angle of attack of a pulsating immersed jet with metal balls from 900 to 1250 leads to an increase in the efficiency of cleaning. The analysis of the appearance of the surface of model pollutants confirmed the main theoretical assumptions about the mechanical nature of the interaction of a submerged pulsating jet of liquid with solid particles with pollution and showed the effectiveness of the method of cleaning pollution with a pulsating submerged jet of liquid with solid particles.
Twórcy
  • Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
autor
  • Department of Water Supply and Sewage Systems, Faculty of Construction, Architecture and Environmental Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland
  • Department of Fundamentals of Technology, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
  • Khmelnytskyi Polytechnic College of NU “Lviv Polytechnic”, 10, Zarichanska, Lviv, Ukraine
  • Department of Foundry and Welding, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35-959, Rzeszow, Poland
Bibliografia
  • 1.Chahine, G.L., Kapahi, A., Choi. J.-K., Hsiao. Ch.-T. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sono¬chemistry, 29, (2016) 528-549.
  • 2.Latyshenok, M. The main parameters of the abra¬sive-cavitation jet and their influence on the inten¬sity of washing agricultural machines. Herald of RGATU. 4, (2010) 65–66.
  • 3.Kohli, R. Mittal, Kashmiri L. Developments in Surface Contamination and Cleaning: Methods for Surface Cleaning. Volume 9. Elsevier, (2016) pp. 196.
  • 4.Tsyganovsky, A. Technological possibilities of hydroabrasiveprocessing with submerged jets. Vi¬brations in engineering and technology. 2, (2010) 205-215.
  • 5.Burdick. G.M., Berman N.S., Beaudoin S.P. Hydro¬dynamic particle removal from surfaces. Thin Solid Films. 488, 1-2, (2005) 116–123.
  • 6.Raykowski, A., Hader, M., Maragno. B. and Spelt, JX. Blast Cleaning of Gas Turbine Components: De¬posit Removal and Substrate Deformation. Wear, 249, (2001) 127–132.
  • 7.Witte, A.K., Bobal. M., David R., Blattler. B., Sch¬oder. D., Rossmanith, P. Investigation of the poten¬tial of dry ice blasting for cleaning and disinfection in the food production environment. LWT – Food Science anil Technology, 75, (2016) 735–741.
  • 8.Ghobeity, A., Hailu, G., Krajac, T., Spelt, J.K. and Papini M. Process Repeatability in Abrasive Jet Mi¬cromachini ng. J. Materials Processing Technology. 190, (2007) 51–60.
  • 9.Kowsari, K., Nouraei, H., James, D.F. Spelt. J.K. and Papini. M. Abrasive Slurry Jet Micro-machin¬ing of Holes in Brittle and Ductile Materials. Jour¬nal of Materials Processing Technology, 214, (2014) 1909-1920.
  • 10.Nouhi, A., Kowsari, K., Spelt, J. K. and Papini. M. Abrasive Jet Machining of Channels on Highly-curved Glass and PMMA Surfaces. Wear, 356-357, (2016) 30–39.
  • 11.Nouraei, H., Kowsari, K., Papini, M. and Spelt. J.K. Operating Parameters to Minimize Feature Size in Abrasive Slurry Jet Micro-machining. Precision Eng., 44, (2016) 109–123.
  • 12.Andilakhay, A. Abrasive processing of parts with submerged jets.Mariupol. PGTU, (2006) pp. 190.
  • 13.Andilakhay, A. Conditions for increasing the pro¬ductivity of abrasive processing. Bulletin ofNTU “KHPl”, Xs 53(959), (2012) 42-47.
  • 14.Karuppanan, S. Romero. J.S., de los Rios, E.R. et al. A theoretical and experimental investigation into the development of coverage in shot peening. In: Wagner IL (ed.) Shot peening. Weinheim: Wiley- VCH. (2002) pp. 101–107.
  • 15.Zoeteweij, M.L., Van der Donck, J.C., Versluis, R. Particle removal in linear shear flow: model predic¬tion and experimental validation. Journal of adhe¬sion science and technology. 23, 6, (2009) 899–911.
  • 16.Maieika, D., Ragulskis, K., Kandrotaite-Janutiene, R., Bubulis, A.. Bartkus, A. Cleaning of the surface contaminated by micro-paiticles by means of vibra¬tions. Vihroeng meeting Procedia, 7, (2016) 65–69.
  • 17.Ghobeity, A., Krajac, T., Buizynski, T., Papini, M. and Spelt. J.K. Surface Evolution Models in Abrasive Jet Micro machining. Wear. 264, (2007) 185-198.
  • 18. Staryi, A. R., Hordeev, A. I. Research the impact on productivity of parameters and operating modes of the vibration machine drive for cleaning and wash¬ing contamination by submerget stream jet with sold particles. East European Science Journal. 1, 4(68), (2021) 46–52.
  • 19. Abramovich, G.N., Girchovich, TA., Krashenin¬nikov. S.Yu., Sckundov. A.N., and Smirnova, I.P. Theory of Turbulent Jets. Nauka. p.716, (1984).
  • 20. Frija, M., Hassine, T., Fathallah, R . Bouraoui, C., Dogui, A. Finite element modelling of shot peen¬ing process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity. Materials Science and Engineering. 426, (2006) 173–180. DOI: 10.1016/j. nisca. 2006. 03.097.
  • 21. Hiltimen, K., Jus berg, A., Kallio, S. Multiphase Flow Dynamics. Theory and Numerics. Helsinki: Edita Prima Oy. (2009) pp. 113.
  • 22. Ciampini, D., Spelt, J. K., Papini, M. Simulation of interference effects in particle streams following impact with a flat surface. PartI. Theory and analy¬sis. Wear 254, (2003) 237–249.
  • 23. Ghobeity, A., Papini, M. and Spelt J.K. Abrasive Jet Micro¬machining of Planar Areas and Transi¬tional Slopes in Glass using Target Oscillation. J. of Materials Processing Technology, 209, (2009) 5123–5132.
  • 24. Jafar, R. Haj, Mohammad, Spelt, J.K. and Papini, M. Numerical Simulation of Surface Roughness and Erosion Rate of Abrasive Jet Micro-machined Channels. Wear. 303, (2013) 302–312.
  • 25. Hashemnia, K. and Spelt. J.K. Particle Impact Ve¬locities in Vibrationally Fluidized Granular Flows Predicted Using the Discrete Element Method. Chem. Eng. Sci., 109, (2014) 123-135.
  • 26. Ciampini, D., Spelt J.K., Papini, M. Simulation of interference effects in particle streams following im¬pact with a flat surface. Pan Parametric study and implications for erosion testing and blast cleaning. Wear 254, (2003) 250–264.
  • 27. Nouraei, H., Wodoslawsky, A., Papini, M. and Spelt, J. K. Characteristics of Abrasive Slurry Jet Micro-machining: A Comparison with with Abrasive Air Jet Micro-machining. J. of Materials Processing Technology, 213, (2013) 1711–1724.
  • 28. Li, Z., Yang, F., Liu, Y., Gao, Y. Numerical simula¬tion of derusting treatment of steel parts by shot blast. CMES-Computer Modeling in Engineering & Sciences, 120, (2010) 157–175.
  • 29. Chen, J., Desai, D., Heyns S., Pietra, F. Literature review of numerical simulation and optimization of the shot peening process. Advances in mechanical engineering. 11(3), (2019) 1–19.
  • 30. Hong, T., Wen, D.H. and Yuan, J.L. Optimising shot peening parameters using finite element and discrete element analysis. Appl Mech Mater, 10-12, (2008) 493–497.
  • 31. Pat. for utility model №132837. IPC B08B 3/10. Vibrating machine for cleaning contamination with a flow’ of solid particles and washing parts during equipment repair. Skyba, M., Stary, A., Hor¬dieiev, A., Hordieiev, O. u20I810344; statement 19.10.2018. publ. 11.03.2019. Bui. (2019) 5.
  • 32. Staryy, A.R., Hordieiev, A.I. Analysis of analytical models of the vibrating drive of the machine for washing and cleaning with a pulsating jet of liquid and experimental study of its modes of operation. Herald of Khmelnytskyi National University, Tech¬nical Sciences. 4. (2021) 77–83.
  • 33. Cui, Y., Sommerfield, M. Forces on micron-sized par¬ticles randomly distributed on the surface of larger particles and possibility of detachment. International Journal of Multiphase Flow, 72, (2015) 39–52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38794c86-4595-4a20-85e7-bc8324d0b434
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.