PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fundamental solutions in the full coupled theory of elasticity for solid with double porosity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (38 ; 27-31.08.2012 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper discusses the full coupled linear theory of elasticity for solids with double porosity. The system of the governing equations is based on the equations of motion, conservation of fluid mass, the constitutive equations and Darcy’s law for material with double porosity. Four spatial cases of the dynamical equations are considered: equations of steady vibrations, equations in Laplace transform space, equations of quasi-static and equations of equilibrium. The fundamental solutions of the systems of these partial differential equations (PDEs) are constructed by means of elementary functions and finally, the basic properties of these solutions are established.
Rocznik
Strony
367--390
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Institute for Fundamental and Interdisciplinary Mathematics Research Ilia State University, K. Cholokashvili Ave., 3/5 0162 Tbilisi, Georgia
autor
  • Dipartimento di Costruzioni e Metodi Matematici in Architettura, Università di Napoli, “Federico II” Via Monteoliveto 3 80134 Napoli, Italy
Bibliografia
  • 1. M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155–164, 1941.
  • 2. G.I. Barenblatt, I.P. Zheltov, I.N. Kochina, Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata), Journal of Applied Mathematics and Mechanics, 24, 1286–1303, 1960.
  • 3. R.K. Wilson, E.C. Aifantis, On the theory of consolidation with double porosity, I, International Journal of Engineering Science, 20, 1009–1035, 1982.
  • 4. M.Y. Khaled, D.E. Beskos, E.C. Aifantis, On the theory of consolidation with double porosity, III, International Journal for Numerical and Analytical Methods in Geomechanics, 8, 101–123, 1984.
  • 5. D.E. Beskos, E.C. Aifantis, On the theory of consolidation with double porosity, II, International Journal of Engineering Science, 24, 1697–1716, 1986.
  • 6. N. Khalili, M.A. Habte, S. Zargarbashi, A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis, Computers and Geotechnics, 35, 872–889, 2008.
  • 7. N. Khalili, S. Valliappan, Unified theory of flow and deformation in double Poros media, European Journal of Mechanics, A/Solids,15, 321– 336, 1996.
  • 8. Y. Zhao, M. Chen, Fully coupled dual-porosity model for anisotropic formations, International Journal of Rock Mechanics and Mining Sciences, 43, 1128–1133, 2006.
  • 9. N. Khalili, Coupling effects in double porosity media with deformable matrix, Geophysical Research Letters,30, 2153, 2003.
  • 10.J.G. Berryman, H.F. Wang, The elastic coefficients of double-porosity models for fluid transport in jointed rock, Journal of Geophysical Research, 100 , 34611–34627, 1995.
  • 11. J.G. Berryman, H.F. Wang, Elastic wave propagation and attenuation in a double-porosity dual-permiability medium, International Journal of Rock Mechanics and Mining Sciences, 37, 63–78, 2000.
  • 12. S.R. Pride, J.G. Berryman, Linear dynamics of double-porosity dual-permeability materials, I, Physical Review E, 68, 036603, 2003.
  • 13. M. Bai, D. Elsworth, J.C. Roegiers, Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs, Water Resources Research, 29, 1621–1633, 1993.
  • 14. K.N. Moutsopoulos, A.A. Konstantinidis, I. Meladiotis, Ch.D. Tzimopoulos, E.C. Aifantis, Hydraulic behavior and contaminant transport in multiple porosity media, Transport in Porous Media, 42, 265–292, 2001.
  • 15. M. Bai, J.C. Roegiers, Fluid flow and heat flow in deformable fractured porous media, International Journal of Engineering Science, 32, 1615–1633, 1994.
  • 16. N. Khalili, A.P.S. Selvadurai, A fully coupled constitutive model for thermo-hydromechanical analysis in elastic media with double porosity, Geophysical Research Letters, 30, 2268, 2003
  • 17. I. Masters, W.K.S. Pao, R.W. Lewis, Coupling temperature to a double-porosity model of deformable porous media, International Journal for Numerical Methods in Engineering, 49, 421–438, 2000.
  • 18. S.C. Cowin, Bone poroelasticity, Journal of Biomechanics, 32, 217–238, 1999.
  • 19. S.C. Cowin, G. Gailani, M. Benalla, Hierarchical poroelasticity: movement of interstitial fluid between levels in bones, Philosophical Transactions of the Royal Society A: mathematical, physical and engineering sciences, 367, 3401–3444, 2009.
  • 20. E. Rohan, S. Naili, R. Cimrman, T. Lemaire, Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone, Journal of the Mechanics and Physics of Solids, 60, 857–881, 2012.
  • 21. R. de Boer, Theory of Porous Media: Highlights in the historical development and current state, Springer, Berlin, Heidelberg, New York, 2000.
  • 22. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range, II. Higher frequency range, Journal of the Acoustical Society of America, 28, 168–178, 179–191, 1956.
  • 23. M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of Applied Physics, 33, 1482–1498, 1962.
  • 24. M.A. Biot, Theory of finite deformations of porous solids, Indiana University Mathematics Journal, 21, 597– 620, 1972.
  • 25. R. de Boer, M. Svanadze, Fundamental solution of the system of equations of steadyt oscillations in the theory of fluid-saturated porous media, Transport in Porous Media, 56, 39–50, 2004.
  • 26. M. Ciarletta, A. Scalia, M. Svanadze, Fundamental solution in the theory of micropolar thermoelasticity for materials with voids, Journal of Thermal Stresses, 30, 213–229, 2007.
  • 27. S. De Cicco, M. Svanadze, Fundamental solution in the theory of viscoelastic mixtures, Journal of Mechanics of Materials and Structures, 4, 139–156, 2009.
  • 28. M. Svanadze, The fundamental solution of the oscillation equations of the thermoelasticity theory of mixture of two elastic solids, Journal of Thermal Stresses, 19, 633–648, 1996.
  • 29. M. Svanadze, Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures, Journal of Thermal Stresses, 27, 151–170, 2004.
  • 30. M. Svanadze, Fundamental solution in the theory of consolidation with double porosity, Journal of the Mechanical Behavior of Materials, 16, 123–130, 2005.
  • 31. M. Svanadze, S. De Cicco, Fundamental solution of the system of equations of steady oscillations in the theory of thermomicrostretch elastic solids, International Journal of Engineering Science, 43, 417–431, 2005.
  • 32. M. Svanadze, V. Tibullo, V. Zampoli, Fundamental solution in the theory of micro polar thermoelasticity without energy dissipation, Journal of Thermal Stresses, 29, 57–66, 2006.
  • 33. R. Burridge and C.A. Vargas, The fundamental solution in dynamic poroelasticity, Geophysical Journal of the Royal Astronomical Society, 58, 61–90, 1979.
  • 34. G.D. Manolis, D.E. Beskos, Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity, Acta Mechanica, 76, 89–104, 1989.
  • 35. G.D. Manolis, D.E. Beskos, Corrections and additions to the paper “Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity”, Acta Mechanica, 83, 223–226, 1990.
  • 36. L. H ƒormander, The analysis of linear partial differential operators II: differential operators with constant coefficients, Springer, Berlin, Heidelberg, New York, Tokyo, 1983.
  • 37. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland, Amsterdam, New York, Oxford, 1979.
  • 38. A. Scalia, M. Svanadze, On the representations of solutions in the theory of thermoelasticity with microtemperatures, Journal of Thermal Stresses, 29, 849–864, 2006.
  • 39. M. Svanadze, R. Tracinμa, Representations of solutions in the theory of thermoelasticity with microtemperatures for microstretch solids, Journal of Thermal Stresses, 34, 161–178, 2011.
  • 40. T. Gegelia, L. Jentsch, Potential methods in continuum mechanics, Georgian Mathematical Journal, 1, 599–640, 1994.
  • 41. M. Svanadze, The boundary value problems of the full coupled theory of poroelasticity for materials with double porosity, Proceedings in Applied Mathematics and Mechanics, 12, 279–282, 2012.
  • 42. M. Svanadze, A. Scalia, Mathematical problems in the theory of bone poroelasticity, International Journal on Mathematical Methods and Models in Biosciences,1, No 2, 1211225, pp. 1-4, 2012.
  • 43. M. Ciarletta, F. Passarella, M. Svanadze, Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity, Journal of Elasticity, DOI 10.1007/s10659-012-9426-x (to appear).
  • 44. M. Svanadze, A. Scalia, Mathematical problems in the coupled linear theory of bone poroelasticity, Computers and Mathematics with Applications, DOI: 10.1016/j.camwa.2013.01.046 (to appear).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38702442-34c1-4ca5-8cda-fd516b456218
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.