Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let f be a holomorphic cusp form of weight k with respect to SL2(Z) which is a normalized Hecke eigenform, and Lf(s) the L-function attached to f. We shall give a relation between the number of zeros of Lf(s) and of the derivatives of Lf(s) using Berndt’s method, and an estimate of zero-density of the derivatives of Lf(s) based on Littlewood’s method.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
147--164
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
Bibliografia
- [1] M. Aoki and M. Minamide, A zero density estimate for the derivatives of the Riemann zeta function, J. Algebra Number Theory Acad. 2 (2012), 361-375.
- [2] B. C. Berndt, The number of zeros for ζ(k)(s), J. London Math. Soc. (2) 2 (1970), 577-580.
- [3] A. Good, Approximative Funktionalgleichungen und Mittelwertsätze für Dirichletreihen, die Spitzenformen assoziiert sind, Comment. Math. Helv. 50 (1975), 327-361.
- [4] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), 1-28.
- [5] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, de Gruyter Expositions Math. 5, de Gruyter, 1992.
- [6] C. G. Lekkerkerker, On the zeros of a class of Dirichlet series, Dissertation, Utrecht, 1955.
- [7] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49-65.
- [8] R. A. Rankin, Contributions to the theory of Ramanujan's function τ (n) and similar functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 357-373.
- [9] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 1859, 671-680.
- [10] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934), 514-521.
- [11] R. Spira, Zero-free regions of ζ(k)(s), J. London Math. Soc. 40 (1965), 677-682.
- [12] R. Spira, Another zero-free region for ζ(k)(s), Proc. Amer. Math. Soc. 26 (1970), 246-247.
- [13] E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, 1939.
- [14] H. von Mangoldt, Zu Riemanns Abhandlung ,,Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, J. Reine Angew. Math. 114 (1895), 255-305.
- [15] Y. Yashiro, Approximate functional equation and mean value formula for the derivatives of L-functions attached to cusp forms, Funct. Approx. Comment. Math. 53 (2015), 97-122.
- [16] C. Y. Yildirim, Zeros of ζn(s) & ζ‴(s) in σ < 1/2, Turk. J. Math. 24 (2000), 89-108.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38635ad5-ea97-491f-a206-09316336a6fe