PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Lebesgue and Sobolev spaces on a time-scale

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the generalized Lebesgue and Sobolev spaces on a bounded time-scale. We study the standard properties of these spaces and compare them to the classical known results for the Lebesgue and Sobolev spaces on a bounded interval. These results provide the necessary framework for the study of boundary value problems on bounded time-scales.
Rocznik
Strony
705--731
Opis fizyczny
Bibliogr, 21 poz.
Twórcy
autor
  • Lodz University of Technology Institute of Mathematics 90-924 Lodz, ul. Wolczanska 215, Poland
  • Lodz University of Technology Institute of Mathematics 90-924 Lodz, ul. Wolczanska 215, Poland
Bibliografia
  • [1] R.P. Agarwal, V. Otero-Espinar, K. Perera, R.D. Vivero, Basic properties of Sobolev's spaces on time scales, Adv. Difference Equ. (2006), Art. ID 38121, 14 pp.
  • [2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Univer-sitext, Springer, New York, 2011.
  • [3] A. Cabada, D.R. Vivero, Criterions for absolute continuity on time scales, J. Difference Equ. Appl. 11 (2005), 1013-1028.
  • [4] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 4, 1383-1406.
  • [5] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Le.be.sgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg, 2011.
  • [6] P. Drabek, J. Milota, Methods of nonlinear analysis. Applications to differential equations, 2nd ed., Birkhauser Advanced Texts: Basler Lehrbucher, Birkhauser/Springer Basel AG, Basel, 2013.
  • [7] X. Fan, D. Zhao, On the spaces Lp(x\n) and Wm'p(x\n), J. Math. Anal. Appl. 263 (2001) 2, 424-446.
  • [8] X. Fan, Q. Zhang, Existence of solutions for p(x)-Lapladan Dirichlet problem, Nonlinear Anal. 52 (2003) 8, 1843-1852.
  • [9] M. Galewski, R. Wieteska, Existence and multiplicity results for boundary value problems connected with the discrete p(-)-Lapladan on weighted finite graphs, Appl. Math. Comput. 290 (2016), 376-391.
  • [10] M. Galewski, R. Wieteska, A note on the multiplicity of solutions to anisotropic discrete BVP's, Appl. Math. Lett. 26 (2013), 524-529.
  • [11] G.Sh. Guseinov, B. Kaymakgalan, Basics of Riemann delta and nabla integration on time scales, Special issue in honour of Professor Allan Peterson on the occasion of his 60th birthday, Part I. J. Difference Equ. Appl. 8 (2002) 11, 1001-1017.
  • [12] P. Harjulehto, P. Hasto, U.V. Le, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010) 12, 4551-4574.
  • [13] M. Mihailescu, V. Radulescu, S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Difference Equ. Appl. 15 (2009) 6, 557-567.
  • [14] D. Motreanu, V. Radulescu, Variational and non-variational methods in nonlinear analysis and boundary value problems. Nonconvex Optimization and its Applications, Dordrecht, Netherlands: Kluwer Academic Publishers, 2003.
  • [15] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
  • [16] J. Musielak, Wstetp do analizy funkcjonalnej, PWN, Warszawa, 1989 [in Polish].
  • [17] M. Ruzicka, Electrorheological fluids: modelling and mathematical theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
  • [18] B.P. Rynne, L2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328 (2007) 2, 1217-1236.
  • [19] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators, New York, Springer-Verlag, 1990.
  • [20] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 4, 675-710.
  • [21] J. Zhou, Y. Li, Sobolev's spaces on time scales and its applications to a class of second order Hamiltonian systems on time scales, Nonlinear Anal. 73 (2010) 5, 1375-1388.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3861df36-b222-41ca-a250-054f63657ee2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.