PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of Die-Attach Method by Sinter Bonding Using Ag-40Cu Mechanically Alloyed Particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 μm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.
Twórcy
autor
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
  • Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
Bibliografia
  • [1] M. R. Werner, W. R. Fahrner, IEEE Trans. Ind. Electron. 48, 249-257 (2001).
  • [2] J. L. Hudgins, G. S. Simin, E. Santi, M. A. Khan, IEEE Trans. Power Electron. 18, 907-914 (2003).
  • [3] T. G. Lei, J. N. Calata, G.-Q. Lu, X. Chen, S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98-104 (2010).
  • [4] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, M. Nogi, Microelectron. Reliab. 52, 375-380 (2012).
  • [5] S. Soichi, K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 923- 929 (2013).
  • [6] K. S. Tan, Y. H. Wong, K. Y. Cheong, Int. J. Therm. Sci. 87, 169-177 (2015).
  • [7] W. Lai, M. Chen, L. Ran, S. Xu, L. Pan, O. Alatise, P. Mawby, IEEE Trans. Power Electron. 32, 1431-1441 (2017).
  • [8] I. E. Anderson, S. Choquette, K. T. Reeve, C. Handwerker, Proceedings of 2018 Pan Pacific Microelectronics Symposium, IEEE 1, Big Island (2018).
  • [9] S. Jeong, S. H. Lee, Y. Jo, S. S. Lee, Y.-H. Seo, B. W. Ahn, G. Kim, G.-E. Jang, J.-U. Park, B.-H. Ryu, Y. Choi, J. Mater. Chem. C 1, 2704-2710 (2013).
  • [10] W. Li, M. Chen, J. Wei, W. Li, C. You, J. Nanopart. Res. 15, 1949 (2013).
  • [11] K. Uenishi, K. F. Kobayashi, K. N. Ishihara, P. H. Shingu, Mater. Sci. Eng. A134, 1342-1345 (1991).
  • [12] K. B. Gerasimov, V. V. Boldyrev. Mater. Res. Bull. 31, 1297-1305 (1996).
  • [13] A. G. Oana, N. Claudiu, S. Gabriela, Solid State Phenom. 188, 382-387 (2012).
  • [14] S. Zghal, M. J. Hÿtch, J.-P. Chevalier, R. Twesten, F. Wu, P. Bellon, Acta Mater. 50, 4695-4709 (2002).
  • [15] S. Zghal, R. Twesten, F. Wu, P. Bellon, Acta Mater. 50, 4711-4726 (2002).
  • [16] M. J. Kim, H. J. Lee, S. H. Yong, O. J. Kwon, S.-K. Kim, J. J. Kim, J. Electrochem. Soc. 159, D253-D259 (2012).
Uwagi
EN
1. This work was supported by the Materials & Components Technology Development Program (10080187) funded by the Ministry of Trade, Industry & Energy (MI, Korea). The authors also thank Korean Basic Science Institute (KBSI) Busan center for TG analysis.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-385d6210-ffd6-4860-8042-e2b5b66efb56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.