PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A two dimensional problem on laser pulse heating in thermoelastic microelongated solid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present discussion, the plane strain deformation due to laser pulse heating in a thermoelastic microelongated solid has been discussed. The analytic expressions for displacement component, force stress, temperature distribution and micro-elongation have been derived. The effect of pulse rise time and micro-elongation on the derived components have been depicted graphically.
Rocznik
Strony
69--85
Opis fizyczny
Bibliogr. 37 poz., rys., wz.
Twórcy
  • Department of Mathematics and Humanities, Maharishi Markandeshwar University, Sadopur, Ambala-134007, Haryana, India
  • Department of Applied Sciences, D.A.V Institute of Engineering and Technology, Kabir Nagar, Jalandhar-144008, Punjab, India
  • Department of Applied Sciences, Guru Nanak Dev Engineering College, Gill Road, Ludhiana-141006, Punjab, India
Bibliografia
  • [1] Sun Y., Fang D., Saka M.,. Soh A.K.: Laser-induced vibrations of micro beams under different boundary conditions. Int. J. Solids Structures 45(2008), 1993–2013.
  • [2] Youssef H.M., Al-Felali A.S.: Generalized thermoelasticity problem of material subjected to thermal loading due to laser pulse. Applied Mathematics 3(2012), 142–146.
  • [3] Youssef H.M., El-Bary A.A.: Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. J. Thermal Stresses 37(2014), 12, 1379–1389.
  • [4] Othman M.I.A., Hasona W.M., Abd-Elaziz E.M.: The effect of rotation on fiber-reinforced under generalized magneto-thermoelasticity subject to thermal loading due to laser pulse comparison of different theories. Canadian Journal of Physics 92(2014), 1–14.
  • [5] Othman M.I.A., Hilal M.I.M.: Influence of temperature dependent properties and gravity on porous thermoelastic solid due to laser pulse heating with G-N Theory. Int. J. Innovative Research in Science, Engineering and Technology 4(2015), 2310–2317.
  • [6] Othman M.I.A., Abd-Elaziz E.M.: The effect of thermal loading due to laser pulse in generalized thermoelastic medium with voids in dual phase lag model. J. Thermal Stresses 38(2015), 9, 1068–1082.
  • [7] Kumar R., Kumar A., Singh D.: Thermomechanical interactions due to laser pulse in microstretch thermoelastic medium. Arch. Mechanics 67(2015), 6, 439–456.
  • [8] Othman M.I.A., Hilal M.I.M.: Propagation of plane waves of magnetothermoelastic medium with voids influenced by the gravity and laser pulse under GN theory. Multidiscipline Modeling Materials and Structures 12(2016), 9, 326–344.
  • [9] Abbas I.A., Marin M.: Analytical solution of thermoelastic interaction in a halfspace by pulsed laser heating. Physica E: Low-dimensional Systems and Nanostructures 87(2017), 254–260.
  • [10] Ailawalia P., Sachdeva S.K., Pathania D.S.: Laser pulse heating in thermomicrostretch elastic layer overlying thermoelastic half-space. J. Applied Physical Sciences International, 7(2017), 4, 178–192.
  • [11] Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids I. Int. J. Engineering Science 2(1964), 189–203.
  • [12] Suhubi E.S., Eringen A.C.: Nonlinear theory of micro-elastic II. Int. J. Engineering Science 2(1964), 389–404.
  • [13] Eringen A.C.: Linear theory of micropolar elasticity. ONR Techanical report No. 29, (1965), School of Aeronautics, Aeronautics and Engineering Science, Purdue University.
  • [14] Eringen A.C.: A unified theory of thermomechanical materials. Int. J. Engineering Science 4(1966), 179–202.
  • [15] Eringen A.C.: Linear theory of micropolar elasticity. J. Mathematics and Mechanics, 15(1996), 909–923.
  • [16] Eringen A.C.: Micropolar elastic solids with strech. Ari Kitabevi Matbassi 24(1971), 1–18.
  • [17] Nowacki W.: Couple stresses in the theory of thermoelasticity III. Bull. PASci 8(1966), 801–809.
  • [18] Eringen A.C.: Foundation of micropolar thermoelasticity. Courses and Lectures, No. 23, CISM, Udine, Springer-Verlag, Vienna New York 1970.
  • [19] Tauchert T.R., Claus W.D., Jr., Ariman T.: The linear theory of micropolar thermoelasticity. Int. J. Eng. Sci. 6(1968), 36–47.
  • [20] Nowacki W., Olszak W.: Micropolar thermoelasticity. In: Micropolar thermoelasticity (W. Nowacki and Olszak (Eds.)), CISM Courses and Lectures, No. 151, Udine, Springer-Verlag, Vienna 1974.
  • [21] Lord H.W., Shulman Y.: A generalized dynamical theory of thermo-elasticity. J. Mech.Phys. Solids 15(1967), 299–306.
  • [22] Muller I.M.: The coldness, universal function in thermoelastic bodies. Rational Mechanics Analysis 41(1971), 319–332.
  • [23] Green A.E., Laws N.: On the entropy production inequality. Archives of Rational Mechanics and Analysis 45(1972), 45–47.
  • [24] Green A.E., Lindsay K.A.: Thermoelasticity. J. Elasticity 2(1972), 1–7.
  • [25] Suhubi E.S.: Thermoelastic solids in continuum physics. New York 1975..
  • [26] Sherief H.H.: Fundamental solution of the generalized thermoelastic problem for short times. Journal of Thermal Stresses 9(1986), 2, 151–164.
  • [27] Dhaliwal R.S., Majumdar S.R., Wang J.: Thermoelastic waves in an infinite solid caused by a line heat source. Int. J. Mathematics and Mathematical Sciences 20(1997), 2, 323–334.
  • [28] Chandrasekharaiah D.S., Srinath K.S.: Thermoelastic interactions without energy dissipation due to a point heat source. J. Elasticity 50(1998), 97–108.
  • [29] Sharma J.N., Chauhan R.S.: Mechanical and thermal sources in a generalized thermoelastic half-space. J. Thermal Stresses 24 (2001), 7, 651–675.
  • [30] Sarbani C., Amitava C.: Transient disturbance in a relaxing thermoelastic halfspace due to moving internal heat source. Int. J. Mathematics and Mathematical Sciences 22(2004), 595–602.
  • [31] Youssef H.M.: Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source. Computational Mathametical Modelling 21(2010), 2, 211–225.
  • [32] Shaw S., Mukhopadhyay B.: Periodically varying heat source response in a functionally graded microelongated medium. Applied Mathematics and Computation 128(2012), 11, 6304–6313.
  • [33] Shaw S., Mukhopadhyay B.: Moving heat source response in a thermoelastic microelongated solid. J. Engineering Physics and Thermophysics 86(2013), 3, 716–722.
  • [34] Ailawalia P., Sachdeva S.K., Pathania D.S.: Internal heat source in thermoelastic microelongated solid at an interface under Green Lindsay theory. J. Theor.App. Mech-Pol 46(2016), 2, 65–82.
  • [35] Eringen A.C.: Microcontinuum Field Theories. I. Foundations and Solids. Springer Verlag, New York 1999.
  • [36] Kiris A., Inan E.: 3D vibration analysis of the rectangular microdamaged plates. In: Proc. 8th Int. Conf. on Vibration Problems (ICOVP), India , (2007), 207–214.
  • [37] De Cicco S., Nappa L.: On the theory of thermomicrostretch elastic solids. J. Thermal Stresses 22(1999), 565–580.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3858364e-16fb-40b9-a5ae-0aa6b4201c3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.