PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On intersections of Cantor sets: Hausdorff measure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We establish formulas for bounds on the Haudorff measure of the intersection of certain Cantor sets with their translates. As a consequence we obtain a formula for the Hausdorff dimensions of these intersections.
Rocznik
Strony
575--598
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Wright State University Department of Mathematics Dayton OH 45435
  • Wright State University Department of Mathematics Dayton OH 45435
Bibliografia
  • [1] E. Ayer, R.S. Strichartz, Exact Hausdorff measure and intervals of maximum density for Cantor sets, Trans. Amer. Math. Soc. 351 (1999) 9, 3725–3741.
  • [2] I.V. Bondarenko, R.V. Kravchenko, On Lebesgue measure of integral self-affine sets, Discrete Comput. Geom. 46 (2011), 389–393.
  • [3] G.J. Davis, T.-Y Hu, On the structure of the intersection of two middle thirds Cantor sets, Publ. Math. 39 (1995), 43–60.
  • [4] G.-T. Deng, X.-G. He, Z.-X. Wen, Self-similar structure on intersections of triadic Cantor sets, J. Math. Anal. Appl. 337 (2008) 1, 617–631.
  • [5] S.-J. Duan, D. Liu, T.-M. Tang, A planar integral self-affine tile with Cantor set intersections with its neighbors, Integers 9 (2009) A21, 227–237.
  • [6] M. Dekking, K. Simon, On the size of the algebraic difference of two random Cantor sets, Random Structures Algorithms 32 (2008) 2, 205–222.
  • [7] M. Dai, L. Tian, On the intersection of an m-part uniform Cantor set with its rational translations, Chaos Solitons Fractals 38 (2008), 962–969.
  • [8] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.
  • [9] H. Furstenberg, Intersections of Cantor sets and transversality of semigroups, Problems in analysis (Sympos. Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), Princeton Univ. Press, Princeton, N.J., 1970, 41–59.
  • [10] D. Feng, Z. Wen, Jun Wu, Some dimensional results for homogeneous Moran sets, Science in China, Series A 40 (1997) 5, 475–482.
  • [11] J. Hawkes, Some algebraic properties of small sets, Q. J. Math. Oxf. 26 (1975), 713–747.
  • [12] J.E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30 (1981), 713–747.
  • [13] K. Igudesman, Lacunary self-similar fractal sets and intersection of Cantor sets, Lobachevskii J. Math 12 (2003), 41–50.
  • [14] D. Kong, W. Li, F.M. Dekking, Intersections of homogeneous Cantor sets and beta-expansions, Nonlinearity 23 (2010) 11, 2815–2834.
  • [15] R. Kenyon. Y. Peres, Intersecting random translates of invariant Cantor sets, Invent. Math. 104 (1991), 601–629.
  • [16] R. Kraft, Intersections of thick Cantor sets, Mem. Amer. Math. Soc. 97 (1992) 468, vi+119.
  • [17] R.L. Kraft, Random intersections of thick Cantor sets, Trans. Amer. Math. Soc. 352 (2000) 3, 1315–1328.
  • [18] J. Li, F. Nekka, Intersection of triadic Cantor sets with their translates. II. Hausdorff measure spectrum function and its introduction for the classification of Cantor sets, Chaos Solitons Fractals 19 (2004) 1, 35–46, Dedicated to our teacher, mentor and friend, Nobel laureate, Ilya Prigogine.
  • [19] W. Li, Y. Yao, Y. Zhang, Self-similar structure on intersection of homogeneous symmetric Cantor sets, Math. Nachr. 284 (2011) 2–3, 298–316.
  • [20] J. Marion, Mesure de hausdorff d’un fractal ‘a similitude interne, Ann. Sc. Math. Québec 10 (1986) 1, 51–81.
  • [21] J. Marion, Mesures de Hausdorff d’ensembles fractals, Ann. Sc. Math. Québec 11 (1987), 111–132.
  • [22] C.G. Moreira, There are no C1-stable intersections of regular Cantor sets, Acta Math. 206 (2011) 2, 311–323.
  • [23] P. Mora, K. Simon, B. Solomyak, The Lebesgue measure of the algebraic difference of two random Cantor sets, Indagationes Mathematicae 20 (2009), 131–149.
  • [24] F. Nekka. J. Li, Intersections of triadic Cantor sets with their rational translates – I, Chaos Solitons Fractals 13 (2002), 1807–1817.
  • [25] J. Palis, Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets, The Lefschetz centennial conference, Part III (Mexico City,1984) (Providence, RI), Contemp. Math., vol. 58, Amer. Math. Soc., 1987, 203–216.
  • [26] J.D. Phillips, Intersections of deleted digits Cantor sets with their translates, Master’s thesis, Wright State University, 2011.
  • [27] S. Pedersen, J.D. Phillips, Intersections of certain deleted digits sets, Fractals 20 (2012), 105–115.
  • [28] Y. Peres, B. Solomyak, Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc. 350 (1998) 10, 4065–4087.
  • [29] C.Q. Qu, H. Rao, W.Y. Su, Hausdorff measure of homegeneous Cantor set, Acta Math.Sin., English Series 17 (2001) 1, 15–20.
  • [30] R.F. Williams, How big is the intersection of two thick Cantor sets?, Continuum theory and dynamical systems (Arcata, CA, 1989), Contemp. Math., vol. 117, Amer. Math. Soc., Providence, RI, 1991, 163–175.
  • [31] Y.X. Zhang, H. Gu, Intersection of a homogeneous symmetric Cantor set with its translations, Acta Math. Sinica (Chin. Ser.) 54 (2011) 6, 1043–1048.
  • [32] Y. Zou, J. Lu, W. Li, Self-similar structure on the intersection of middle-(1−2Β) Cantor sets with Β ∈(1/3, 1/2), Nonlinearity 21 (2008) 12, 2899–2910.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38574dd8-7f4d-4c33-ae08-7580f0cbafb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.