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1. INTRODUCTION

In this paper we study, and make precise, the “size” (or thickness) of the intersection
of two Cantor sets; typically one will be a translate of the other. By “size” we mean an
estimate on a suitable Hausdorff dimension. Indeed there are a number of surprises in
the study of these intersection-sets. Our main theorem is Theorem 6.1, and it offers
estimates both from below and above. The estimate from below involves a geometric
exponent. In section 7, we give examples and applications. The “thickness” of a Cantor
set on the real line is a measurement of its “size”. To make thickness precise one in-
troduces Hausdorff dimension and Hausdorff measure, thus leading to conditions that
guarantee, in particular, nonempty intersection of two given Cantor sets. Such con-
ditions are typically subtle; especially a priori estimates from below. The significance
of the problem was noted by Furstenberg, see [9]. Departing from earlier literature,
our present results deal with general classes of such intersection-fractals, thus going
beyond various specialized studies in the prior literature. We offer an overview below
of the earlier literature. While there are prior results in the literature, they are re-
stricted to various classes; and to various special cases. While Cantor sets may, on the
face of it, appear to be rather special, they occur in mathematical models involving
fractals (e.g., iterated function systems (IFS) fractals and self-similar measures); they
further play a role in number theory (e.g., in b-ary number representations, where
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b is a base for a number system); in signal processing and in ergodic theory (e.g.,
in development of codes as beta-expansions); and in limit-theorems from probability
(e.g., explicit properties of infinite Bernoulli convolutions.) Below we cite a sample of
papers dealing with applications: [4,5,7,14,16–19,22,28,30–32]. The literature in the
subject and in neighboring areas and applications is vast, and, in the list above, we
limit ourselves to only a small sample of the literature.

2. STATEMENT OF THE PROBLEM AND RESULTS

Let n ≥ 3 be an integer. Any real number t ∈ [0, 1] has at least one n-ary represen-
tation

t = 0.nt1t2 . . . =

∞∑
k=1

tk
nk

where each tk is one of the digits 0, 1, . . . , n− 1. Deleting some element from the full
digit set {0, 1, . . . n− 1} we get a set of digits D := {dk | k = 1, 2, . . . ,m} with m < n
digits dk < dk+1 and a corresponding deleted digits Cantor set

C = Cn,D :=

{ ∞∑
k=1

xk
nk
| xk ∈ D for all k ∈ N

}
. (2.1)

In this paper we investigate the Hausdorff dimension and measure of the sets
C ∩ (C + t) , where C + t := {x + t | x ∈ C}. Since the problems we consider are
invariant under translation we will assume d1 = 0.

We say that D is uniform, if dk+1−dk, k = 1, 2, . . . ,m−1 is constant and greater
than or equal to 2. We say D is regular, if D is a subset of a uniform digit set. Finally,
we say that D is sparse, if |δ − δ′| ≥ 2 for all δ 6= δ′ in

∆ := D −D = {dj − dk | dj , dk ∈ D} .

Clearly, a uniform set is regular and a regular set is sparse. The set D = {0, 5, 7}
is sparse and not regular. We will abuse the terminology and say Cn,D is uniform,
regular, or sparse provided D has the corresponding property.

Previous studies of the sets C ∩ (C + t) include:

— When C = C3,{0,2} is the middle thirds Cantor set a formula for the Hausdorff
dimension of C ∩ (C + t) can be found in [3] and in [24]. Such a formula can also
be found in [7] if C is uniform and dm = n − 1, and in [15] if C is regular. In
Corollary 2.3 we establish a formula for the Hausdorff dimension for C ∩ (C + t)
when C is sparse.

— Let F+ be the set of all t ≥ 0 such that C ∩ (C + t) is non-empty. For 0 ≤ β ≤ 1,
let Fβ := {t ∈ F+ | dim (C ∩ (C + t)) = β logn(m)} , where dim (C ∩ (C + t)) is
the Hausdorff dimension of C ∩ (C + t) . If C is the middle thirds Cantor set then
F+ = [0, 1] and it is shown in [3, 11, 24] that Fβ is dense in F+ for all 0 ≤ β ≤ 1.
This is extended to regular set and to sets Cn,D such that D satisfies dk+1−dk ≥ 2
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and dm < n − 1 in [27]. It is also shown in [27] that Fβ is not dense in F+ for
all 0 ≤ β ≤ 1 for all deleted digits Cantor sets Cn,D. We address this problem for
the Hausdorff measure in place of the Hausdorff dimension when D is sparse in
Corollary 6.4.

— It is shown in [11,13] that, if C is the middle thirds Cantor set, then the Hausdorff
dimension of C∩(C + t) is 1

3 log3(2) for Lebesgue almost all t in the closed interval
[0, 1] . This is is extended to all deleted digits sets in [15].

— If C is the middle thirds Cantor set, then C ∩ (C + t) is self-similar if and only if
the sequence {1− |yk|} is strong periodic where t =

∑∞
k=1

2yk
3k

and yk ∈ {−1, 0, 1}
for all k by [19]. Thus, C ∩ (C + t) is not, in general, a self-similar set.

— For the middle thirds Cantor set it is shown in [3, 24] that C ∩ (C + t) has
log3(2)–dimensional Hausdorff measure 0 or 1

2k
for some integer k. This is extended

to logn(m)–dimensional Hausdorff measure for uniform sets with dm = n−1 in [7].
In Theorem 2.2 we estimate the s−dimensional Hausdorff measure of C ∩ (C + t) ,
when D is sparse and s is the Hausdorff dimension of C ∩ (C + t) .

Some of the cited papers only consider rational t and some consider Minkowski
dimension in place of Hausdorff dimension. It is known, see e.g., [27] for an elementary
proof, that the (lower) Minkowski dimensions of C ∩ (C + t) equals its Hausdorff
dimension.

Palis [25] conjectured that for dynamically defined Cantor sets typically the cor-
responding set F+ either has Lebesgue measure zero or contains an interval. The
papers [6, 23] investigate this problem for random deleted digits sets and solve it in
the affirmative in the deterministic case.

For n-ary representations t = 0.nt1t2 . . . with tk ∈ {0, 1, . . . , n − 1}, let btck :=∑k
j=1

tj
nj = 0.nt1t2 . . . tk denote the truncation of t to the first k n-ary places. Note

that the truncation of t is unique, unless t admits two different n-ary representations.
The case where t admits a finite n-ary representation is relatively simple. In fact,

Theorem 4.1 shows that, if t = 0.nt1t2 . . . tk, then C ∩ (C + t) is a union of two,
possibly empty, sets A and B, where A is a finite disjoint union of sets of the form
1
nk

(C + h) and B is a finite set. Consequently, we will focus on translations t that do
not admit a finite n-ary representation.

Let

Ck := {0.nx1x2 . . . | xj ∈ D for 1 ≤ j ≤ k}

for each k, then C0 = [0, 1],

Ck+1 ⊂ Ck, and C = Cn,D =

∞⋂
k=0

Ck. (2.2)

Let 0 ≤ t ≤ 1 be fixed. Let J = 1
nk

(C0 + h) be an interval contained in Ck for
some integer h. We say J is in the interval case, if it is also an interval in Ck + btck .
And we say J is in the potential interval case, if J + 1

nk
is an interval in Ck + btck .
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Proposition 2.1. Suppose D is sparse. Let 0 ≤ t ≤ 1. If one of the intervals in Ck
is in the interval case, then no interval in Ck is in the potential interval case. If one
of the intervals in Ck is in the potential interval case, then no interval in Ck is in the
interval case.

Suppose D is sparse and t = 0.nt1t2 . . . . Let µt(0) = 1 and inductively µt(k+1) =
µt(k) ·# (D − tk+1)∩(D ∪ (D + 1)) if one of the intervals in Ck is in the interval case,
µt(k+ 1) = µt(k) ·# (D − n+ tk+1)∩ (D ∪ (D − 1)) if one of the intervals in Ck is in
the potential interval case, and µt(k + 1) = 0 if no interval in Ck is in the interval or
potential interval case. Here #B denotes the number of elements in the finite set B.
Let νt(k) := logm µt (k) , βt := lim infk→∞

νt(k)
k , and Lt := lim infk→∞mνt(k)−kβt .

These numbers all depend on n and D, but we suppress this dependence in the
notation. A special case of Theorem 6.1 is

Theorem 2.2. Let C = Cn,D be a deleted digits Cantor set. Suppose D is sparse,
0 < t < 1 does not admit a finite n-ary representation, and C ∩ (C + t) is non-empty.
If s := βt logn(m), then

m−βtLt ≤H s (C ∩ (C + t)) ≤ Lt,

where H s (C ∩ (C + t)) is the s-dimensional Hausdorff measure of C ∩ (C + t) .

We also show, see Remark 6.2, that Lemma 5.4 leads to a smaller upper bound at
the expense of a more complicated expression for this upper bound. We also present
an example, Example 7.3, showing that this smaller upper bound need not be equal
to the Hausdorff measure of C ∩ (C + t) .

Corollary 2.3. Let C = Cn,D be a deleted digits Cantor set. If D is sparse, 0 < t < 1
does not admit a finite n-ary representation, and C ∩ (C + t) is non-empty, then
C ∩ (C + t) has Hausdorff dimension βt logn(m).

As noted above the sets C ∩ (C + t) are usually not self-similar. In Example 7.4
we construct C and t such that C ∩ (C + t) has Hausdorff dimension β logn(m) and
L = 0 or L = ∞. In these cases C ∩ (C + t) is not self-similar and Theorem 2.2
provides a formula for the Hausdorff measure. We show, Theorem 6.6, that our proof
of Theorem 2.2 can be modified to give the estimate m−1 ≤ H s (C) ≤ 1, where
s = logn(m). A formula for the Hausdorff measure of self-similar sets is not known
except in very special circumstances. However, the papers [1,20,21] contain algorithms
for calculating the Hausdorff measure of self-similar subsets of the real line satisfying
an open set condition. Corollary 6.7 contain estimates on the Hausdorff measure of
C ∩ (C + t) when t admits a finite n-ary representation.

In Section 7 we give examples showing that H s (C ∩ (C + t)) can but need
not equal Lt. We also present an example showing that if D is not sparse, then
H s (C ∩ (C + t)) need not be in the interval

[
m−βtLt, Lt

]
.

We refer to [8] for background information on Hausdorff dimension, Hausdorff
measure and self-similar sets. Parts of this paper are based on the second named
authors’ thesis [26].
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After this work was completed, we became aware of earlier works [10,29], on these
problems. These papers consider a class of Cantor sets similar to but larger than
uniform deleted digits sets with dm = n − 1. We refer to this class as homogeneous
Cantor sets and refer to the cited papers for the exact definition. The first of these
papers, [10], establishes an estimate for homogeneous Cantor sets, similar to our
Theorem 2.2. The second of these papers, [29], shows that, for a smaller class of
homogeneous Cantor sets, the upper bound in [10] is in fact equal to the Hausdorff
measure. Generically, these results do not apply to the cases where D is not uniform.

3. A CONSTRUCTION OF C ∩ (C + t)

In this section we assume n ≥ 3 is given and that D = {dk | k = 1, 2, . . .} is some
digits set. We indicate how a natural method of construction of C can be used to
analyze C∩ (C + t). This construction forms the basis for our analysis of C∩ (C + t) .

The middle thirds Cantor set is often constructed by starting with the closed
interval C0 = [0, 1] and for each k ≥ 0 letting Ck+1 be obtained from Ck be removing
the open middle of each interval in Ck. We show that C = Cn,D can be constructed
in a similar manner.

The refinement of the interval [a, b] is the set

m⋃
j=1

[
a+

dj
n

(b− a) , a+
dj + 1

n
(b− a)

]
.

The set Ck+1 is obtained from Ck by refining each n-ary interval in Ck. For the middle
thirds Cantor set refinement of Ck is the same as removing the open middle third from
each interval in Ck.

Since we are interested in studying C ∩ (C + t) only t such that C ∩ (C + t) is not
empty are of interest. Consequently we introduce the set

F := {t | C ∩ (C + t) 6= ∅} .

It is easy to see that F is compact and F = C − C. As a result, F+ = F ∩ [0,∞)
and F = (−F ) ∪ F. Since C ∩ (C − t) is translate of C ∩ (C + t) it is sufficient to
consider t ≥ 0.

Remark 3.1. It is shown in [27] that F is the compact set {0.nt1t2 . . . | tk ∈ ∆}. In
particular, F is a self-similar set. Note the representations 0.nt1t2 . . . with tk ∈ ∆
allows the digits tk to be positive for some k and negative for other k. We will not
need this construction of F in this paper.

Fix t = 0.nt1t2 . . . in [0, 1]. We split our analysis of C ∩ (C + t) into three steps.
First, we consider the method of construction for the sets Ck ∩ (Ck + btck). Second,
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we establish a relationship between Ck ∩ (Ck + btck) and Ck ∩ (Ck + t) . Thirdly, this
allows us to use that (2.2) implies

C ∩ (C + t) =

∞⋂
k=0

(Ck ∩ (Ck + t)) (3.1)

to investigate C ∩ (C + t) .

4. ANALYSIS OF Ck ∩ (Ck + btck)

Given any h ∈ Z we say that the interval J = 1
nk

(C0 + h) is an n-ary interval of
length 1

nk
.We will simply say n-ary interval when k is understood from the context. In

particular, if U is a compact set, the phrase an n-ary interval of U refers to an n-ary
interval of length 1

nk
contained in U where k is the smallest such k. In particular, Ck

consists of mk disjoint n-ary intervals.
Fix t = 0.nt1t2 . . . in [0, 1]. To construct Ck ∩ (Ck + btck) we begin by generating

Ck+1 by refining each n-ary interval of Ck. Note that btck = h
nk

for some positive
integer h so that Ck + btck also consists of n-ary intervals. Thus, Ck+1 + btck+1 is
generated by first refining each n-ary interval of Ck + btck and then translating these
refined intervals by the positive factor tk+1

nk+1 . We say that Ck ∩ (Ck + btck) transitions
to Ck+1 ∩

(
Ck+1 + btck+1

)
by first generating the sets Ck+1 and Ck+1 + btck+1 and

then taking their intersection.
Let J ⊂ Ck be an arbitrary n-ary interval. Then J can be classified using combi-

nations of the following four cases: (1) J also in an n-ary interval in Ck + btck , (2)
the left hand end point of J is the right hand end point of some n-ary interval in
Ck + btck , (3) the right hand end point of J is the left hand end point of some n-ary
interval in Ck + btck , or (4) J does not have any points in common with Ck + btck .
More specifically, let J be an n-ary interval in Ck.

1. We say J is in the interval case, if there exists an n-ary interval K ⊂ Ck + btck
such that J = K.

2. We say J is in the potential interval case, if there exists an n-ary interval
K ⊂ Ck + btck such that J = K + 1

nk
.

3. We say J is in the potentially empty case, if there exists an n-ary interval
K ⊂ Ck + btck such that J = K − 1

nk
.

4. We say J is in the empty case, if J ∩ (Ck + btck) = ∅.

Any n-ary interval in Ck is in one or more of the four cases described above. An n-ary
interval J in Ck may both in the interval case and in the potential interval case, i.e.,
there exists n-ary intervals KI ,KP ⊂ (Ck + btck) such that KP + 1

nk
= J = KI . It is

also possible for J to be in both the interval case and potentially empty case, or to
be both in the potential interval case and in the potentially empty case. However, the
intersections corresponding to the potentially empty cases do not contribute points
to C ∩ (C + t) , when 0 < t−btck . Hence, we will not identify these cases with special
terminology. Finally, any J in the empty case cannot also be in any of the other cases.
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The idea of our method is to take n-ary interval in Ck and use the above classifi-
cation to investigate the intersection J ∩ C ∩ (C + t) . The basic question is whether
or not this intersection is non-empty? whether or not repeated refinement of J ”leads
to” points in C ∩ (C + t)?

4.1. FINITE n-ARY REPRESENTATIONS

We show that, if t ∈ F+ admits a finite n-ary representation, then C ∩ (C + t) is a
union of finite sets and sets similar to C.

Theorem 4.1. Suppose t = 0.nt1t2 . . . tk is in F+. Then

C ∩ (C + t) = A ∪B,

where A is empty or A =
⋃
j

1
nk

(C + hj) for a finite set of integers hj and B is a
finite, perhaps empty, set. More precisely, each n-ary interval in Ck that is in the
interval case gives rise to a term in the union in A. If dm < n− 1, then B is empty.
If dm = n− 1, then:

(i) each n-ary interval in Ck that is in the potential interval case and not in the
potentially empty case gives rise to one point in B,

(ii) each n-ary interval in Ck that is in the potentially empty case and not in the
potential interval case gives rise to one point in B,

(iii) each n-ary interval in Ck that both is in the potential interval case and in the
potentially empty case gives rise to two point in B.

Proof. Let J0 be an n-ary interval in Ck and let h be the integer for which J0 =
1
nk

(C0 + h) .
Suppose J0 is in the interval case. For j ≥ 0 let Jj+1 be obtained from Jj by

refining each interval in Jj . Since C`+1 is obtained from C` by refining each interval
in C`, it follows that Jj = 1

nk
(Cj + h) for all j ≥ 0. So (2.2) implies

∞⋂
j=0

Jj =
1

nk
(C + h) . (4.1)

Consider the transition from Ck ∩ (Ck + btck) to Ck+1 ∩
(
Ck+1 + btck+1

)
. By

assumption J0 ⊆ Ck and J0 ⊆ Ck + btck . Applying the refinement process to all
intervals gives J1 ⊆ Ck+1 and J1 ⊆ Ck+1 + btck . Since btck = btck+1 we conclude
J1 ⊆ Ck+1 ∩

(
Ck+1 + btck+1

)
= Ck+1 ∩ (Ck+1 + t) . Repeating this argument shows

that Jj ⊆ Ck+j∩(Ck+j + t) for all j ≥ 0. Hence combining (4.1) and (3.1) we conclude

1

nk
(C + h) ⊆ C ∩ (C + t) .

Thus any interval in Ck that is in the interval case gives rise to a “small copy” of C
in C ∩ (C + t) .
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Suppose J0 is in the potential interval case. Then K0 := J0 − 1
nk

is an n-ary
interval in Ck + btck . The refinements of J0 and K0 are

J1 =

m⋃
p=1

1

nk+1
(C0 + nh+ dp) and K1 =

m⋃
p=1

1

nk+1
(C0 + nh+ dp − n) .

Since C0 is a closed interval of length one, 0 ≤ dq ≤ dq+1 ≤ n−1, J1∩K1 is non-empty
iff d0 = 1 + dm − n iff dm = n − 1. In the affirmative case J0 ∩K0 = J1 ∩K1. Since
t = btck = btck+1 we have

C ∩ (C + t) ⊇ (J0 ∩ C) ∩ (K0 ∩ (C + t)) ⊇ (J1 ∩ C) ∩ (K1 ∩ (C + t)) .

Hence, J0 ∩K0 is a point in C ∩ (C + t) iff dm = n− 1.
The case where J0 is in the potentially empty case is similar to the case where J0

is in the potential intervals case.
Finally, suppose J0 is in the empty case. Since t = btck it follows from (2.2)

that J0 ∩ (C + t) ⊆ J0 ∩ (Ck + btck) . But the right hand side is the empty set by
assumption.

Remark 4.2. The sets A and B in Theorem 4.1 need not be disjoint.

4.2. INFINITE n-ARY REPRESENTATIONS

Theorem 4.1 provides us with complete information about C∩(C + t) , when t admits
a finite n-ary representation. Consequently, it remains to investigate C∩(C + t) when
t does not admit such a finite representation, i.e., when

0 < t− btck <
1

nk
for all k ≥ 1. (4.2)

Our next result shows that, if t does not admit a finite n-ary representation, then
only interval and potential interval cases can contribute points to C ∩ (C + t).

Lemma 4.3. Suppose 0 < t− btck <
1
nk

for some k. If J is an n-ary interval in Ck
and J is neither in the interval case nor in the potential interval case, then J∩(Ck + t)
is empty, in particular, the intersection J ∩ C ∩ (C + t) is empty.

Proof. Suppose t = 0.nt1t2 . . . satisfies 0 < t − btck <
1
nk

for some k. Let J be an
n-ary interval in Ck and let K be an n-ary interval in Ck + btck. Pick integers hJ and
hK such that J = 1

nk
(C0 + hJ) and K = 1

nk
(C0 + hK)

Suppose J is in the potentially empty case and K is such that J = K − 1
nk

. Then
hJ = hK − 1. Hence, 0 < t− btck implies

J ∩ (K + (t− btck)) =
1

nk
(
(C0 + hJ) ∩

(
C0 + hJ + 1 + (t− btck)nk

))
= ∅,

since C0 is an interval of length one. By (3.1) this intersection does not contribute
any points to C ∩ (C + t).
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Suppose J is in the empty case. Let K ⊂ Ck + btck be an arbitrary n-ary interval.
Since J is a minimum distance of 1

nk
from K, then K+(t− btck) is at least a distance

1
nk
−(t− btck) > 0 from J . Hence, J∩(Ck + t) = ∅ and J does not contain any points

of C ∩ (C + t).

Remark 4.4. The arguments from the proof of Lemma 4.3 also give some information
about the interval and potential interval cases when t does not admit a finite n-ary
representation. More precisely, suppose J is in the interval case and K ⊂ Ck + btck is
an n-ary interval such that K = J . Since t − btck <

1
nk

then J ∩ (K + (t− btck)) is
an interval of length 1

nk
− (t− btck) > 0 contained in Ck ∩ (Ck + t) which therefore

may contain points of C ∩ (C + t).
Suppose J is in the potential interval case and K is an n-ary interval in Ck + btck

such that K + 1
nk

= J . Since 0 < (t− btck) , then J ∩ (K + t− btck) is an interval of
length t− btck and this intersection may therefore contain points of C ∩ (C + t).

5. ANALYSIS OF THE TRANSITION FROM Ck ∩ (Ck + btck)
TO Ck+1 ∩

(
Ck+1 + btck+1

)
It follows from Lemma 4.3 that, when we investigate C ∩ (C + t), it is sufficient to
consider intervals in Ck that are in the interval case or in the potential interval case.
Fix t = 0.nt1t2 . . . in [0, 1]. Consequently, we begin by considering what happens to
an n-ary interval J in Ck that is in the interval case or the potential intervals case
when we transition from Ck ∩ (Ck + btck) to Ck+1 ∩

(
Ck+1 + btck+1

)
.

Lemma 5.1. Let J ⊂ Ck and K ⊂ Ck+btck be n-ary intervals and let t = 0.nt1t2 . . .
be some point in [0, 1]. Consider the refinements J ′ and K ′ of J and K, respectively.

1. Suppose J = K. (Interval case)
a) If tk+1 is in ∆, then exactly #D ∩ (D + tk+1) of the intervals in J ′ are in the

interval case relative to K ′. By this we mean that the intersection

J ′ ∩
(
K ′ + tk+1

nk+1

)
contains #D ∩ (D + tk+1) intervals of length 1/nk+1.

b) If tk+1 is in ∆−1, then exactly #D∩(D + tk+1 + 1) of the intervals in J ′ are in
the potential interval case relative to K ′. By this we mean that the intersection

J ′ ∩
(
K ′ + tk+1

nk+1 + 1
nk+1

)
contains #D ∩ (D + tk+1 + 1) intervals of length 1/nk+1.

c) If tk+1 is neither in ∆ nor in ∆ − 1, then all intervals in J ′ are either in the
empty case or in the potentially empty case. More precisely, no interval in J ′

is in the interval case or in the potential interval case relative to K ′.
2. Suppose J = K + 1

nk
. (Potential interval case)

a) If tk+1 is in n−∆, then exactly #D∩ (D + n− tk+1) of the intervals in J ′ are
in the interval case relative to K ′.
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b) If tk+1 is in n−∆− 1, then exactly #D ∩ (D + n− tk+1 − 1) of the intervals
in J ′ are in the potential interval case relative to K ′.

c) If tk+1 is neither in n−∆ nor in n−∆−1, then all intervals in the refinement
of J are either in the empty case or in the potentially empty case.

Proof. Let hJ and hK be integers such that J = 1
nk

(C0 + hJ) and K = 1
nk

(C0 + hK)
and let

J(p) :=
1

nk+1
(C0 + hJn+ dp)

and

K(q) :=
1

nk+1
(C0 + hKn+ dq)

for p, q = 1, 2, . . . ,m. Then the refinements of J and K are
⋃
m
p=1J(p) and

⋃
m
q=1K(q).

Suppose J = K, then hJ = hK . Hence J(p) = K(q) + tk+1

nk+1 iff dp = dq + tk+1 and
J(p) = K(q) + tk+1

nk+1 + 1
nk+1 iff dp = dq + tk+1 + 1. This establishes the interval case.

Suppose J = K+ 1
nk
, then hJ = hK+1. So J(p) = K(q)+ tk+1

nk+1 iff n+dp = dq+tk+1

and J(p) = K(q)+ tk+1

nk+1 + 1
nk+1 iff n+dp = dq+tk+1+1. This establishes the potential

interval case.

To describe our analysis of the sets Ck ∩ (Ck + btck) we introduce appropriate
terminology.

— Ck ∩ (Ck + btck) is in the interval case, if there exists an n-ary interval J ⊂ Ck in
the interval case and no n-ary interval K ⊂ Ck is in the potential interval case or
simultaneous case.

— Ck ∩ (Ck + btck) is in the potential interval case, if there exists J ⊂ Ck in the
potential interval case and no n-ary interval K ⊂ Ck is in the interval case or
simultaneous case.

— Ck ∩ (Ck + btck) is in the simultaneous case, if there exist JI , JP ⊂ Ck such that
JI is in the interval case and JP is in the potential interval case.

— Ck ∩ (Ck + btck) is in the irrecoverable case, if J is in the empty or potentially
empty case for all n-ary intervals J ⊂ Ck.

Our next goal is to introduce a function whose values determine whether Ck ∩
(Ck + btck) is in the interval, potential interval, simultaneous, or irrecoverable case.
Since C0 ∩ (C0 + btc0) = [0, 1], then we begin in the interval case and can examine
transitions inductively. The following constructions are motivated by Lemma 5.1. Let
i :=
√
−1 and let

ξ : {0,±1, i} × {0, 1, . . . , n− 1} → {0,±1,±i}
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be determined by

ξ (0, h) := 0,

ξ (1, h) :=


1 if h is in ∆ but not in ∆− 1,

−1 if h is in ∆− 1 but not in ∆,

i if h is both in ∆ and ∆− 1,

0 otherwise,

ξ (−1, h) :=


−1 if h is in n−∆ but not in n−∆− 1,

1 it h is in n−∆− 1 but not in n−∆,

−i if h is both in n−∆ and in n−∆− 1,

0 otherwise,

ξ (i, h) :=


−i if h is in ∆ ∪ (n−∆) but not in (∆− 1) ∪ (n−∆− 1) ,

i if h is in (∆− 1) ∪ (n−∆− 1) but not in ∆ ∪ (n−∆) ,

1 if h is both in ∆ ∪ (n−∆) and in (∆− 1) ∪ (n−∆− 1) ,

0 otherwise.

The function ξ (z, h) is completely determined by D and n. Let σt : N0 → {0,±1, i}
be determined by

σt(0) := 1 and inductively
σt (k + 1) := ξ (σt (k) , tk+1) · σt (k) for k ≥ 0.

By construction of ξ we have σt (k) ∈ {0,±1, i} for all k ≥ 0.

Lemma 5.2. Let t = 0.nt1t2 . . . be some point in [0, 1]. Then Ck ∩ (Ck + btck) is
in the interval case iff σt (k) = 1, the potential interval case iff σt (k) = −1, the
simultaneous case iff σt (k) = i, and the irrecoverable case iff σt (k) = 0.

Proof. This is a simple consequence of Lemma 5.1 and our construction of σ.

We now show that D is sparse iff every t ≥ 0 in F has an n-ary representation
such that for all k ≥ 0 the set Ck ∩ (Ck + btck) is either in the interval case or in the
potential interval case.

Theorem 5.3. Let C = Cn,D be a deleted digits Cantor set. Then

F+ = {t ∈ [0, 1] | σt (k) = ±1 for all k ∈ N}

iff D is sparse.

Proof. Suppose D is sparse, then ∆ ∩ (∆− 1) = ∅ and (n−∆) ∩ (n−∆− 1) = ∅.
Hence, our construction of ξ and σ shows that σt (k) ∈ {0,±1} for all k and all t ∈ F+.
We must show that σt (k) 6= 0 for all k and all t ∈ F+.

Suppose t ∈ F+ such that σt (k) = 0 for some k. By Lemma 5.2 all n-ary intervals
in Ck are in the potentially empty or the empty case. Since t ∈ F+ at least one n-ary
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interval, J say, in Ck is in the potentially empty case and tj = 0 for all j > k. Since
0 ∈ ∆ it follows from the construction of σ that t 6= 0. Hence, there is a k ≥ 1 such
that tk > 0 and tj = 0 for all j > k. Let sj = tj when j < k, sk = tk − 1, and
sj = dm for all j > k. Then t = 0.s1s2 . . . . We must show that σs(j) 6= 0 for all j.
Now σs(j) = σt(t) ∈ {±1} for all j < k. Hence it remains to consider j ≥ k.

The potentially empty cases in Ck ∩ (Ck + btck) are interval cases in Ck ∩(
Ck + btck −

1
nk

)
. Some of the empty cases in Ck ∩ (Ck + btck) may give poten-

tially empty cases in Ck ∩
(
Ck + btck −

1
nk

)
, but they cannot give interval cases in

Ck ∩
(
Ck + btck −

1
nk

)
. Consequently, σs(k) = 1.

Since Cj ∩
(
Cj + btcj

)
= Cj ∩ (Cj + t) for all j ≥ k and t ∈ F it follows from

(3.1) that Cj ∩
(
Cj + btcj

)
is non-empty for all j ≥ k.

Since t = 0.nt1 . . . tk is in F+ and no intervals in Ck are in the interval case
Theorem 4.1 implies dm = n− 1. Since σs(k) = 1 and sj = dm = n− 1 ∈ ∆, it follows
from Lemma 5.1 that σs(j) = 1 for all j > k.

Conversely, suppose D is not sparse, then ∆ ∩ (∆− 1) 6= ∅. Let δ ∈ ∆ ∩ (∆− 1).
Consider t := δ

n . Then σt (1) = i. Hence C1 ∩ (C1 + btc1) = C1 ∩ (C1 + t) contains
at least one n-ary interval J which is in the interval case. The n-ary intervals in
C1∩(C1 + t) refine to 1

n (C + h) for some integer h. By (3.1) 1
n (C + h) ⊆ C∩(C + t) .

In particular, C ∩ (C + t) 6= ∅ so that t ∈ F+.

Theorem 5.3 shows that the simultaneous case does not occur when D is sparse.
In particular, we have established Proposition 2.1.

In the following two lemmas we establish two key results required to establish
Theorem 2.2. In Lemma 5.4 we show that µt (k) counts the number of n-ary intervals
of Ck in either the interval or the potential interval case. In Lemma 5.5 we show that
the intervals counted by µt(k) have points in common with C ∩ (C + t) , hence that
we do not “over” count.

Lemma 5.4. Let C = Cn,D be given. Suppose t ∈ F+ does not admit a finite n-ary
representation and σt(k) = ±1 for all k ≥ 0. Then Ck ∩ (Ck + t) is a union of µt(k)
intervals, each of length

`k :=

{
1
nk
− (t− btck) when σt (k) = 1,

t− btck when σt (k) = −1.

Proof. Let t ∈ F+ be given. Suppose t does not admit a finite n-ary representation
and σt(k) = ±1 for all k. Every n-ary interval in Ck is either in the interval, the
potential, interval, or the potentially empty case. By Lemma 4.3, if J is an n-ary
interval in Ck that is in the potentially empty or the empty case, then J ∩ (Ck + t) is
empty. Hence, it is sufficient to consider n-ary intervals in Ck that either are in the
interval or the potential intervals case. By definition of σt, no n-ary interval in Ck is
both in the interval and the potential interval case.

Since the length of the intervals is determined by Lemma 5.2 and Remark 4.4,
we only need to show that Ck ∩ (Ck + t) contains µt(k) intervals for k ≥ 0. Since
C0 ∩ (C0 + t) = [t, 1] is one interval and µt(0) = 1, the claim holds for k = 0.
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Assume the claim holds for some integer k ≥ 0. Then Ck∩(Ck + t) consists of µt(k)
intervals. Suppose σt(k) = 1. Then Ck contains µt(k) n-ary intervals Jj in the interval
case and no intervals in the potential interval case. Since t ∈ F+ it follows from part
(1) of Lemma 5.1 and Lemma 4.3 that tk+1 ∈ ∆ or tk+1 ∈ ∆ − 1. If tk+1 ∈ ∆, then
each Jj gives #D∩ (D + tk+1) intervals in Ck ∩ (Ck + t) by part (1)(a) of Lemma 5.1
and Remark 4.4. Hence Ck+1 ∩ (Ck+1 + t) contains µt(k) ·#D∩ (D + tk+1) intervals.
On the other hand, if D ∩ (D + tk+1 + 1) is nonempty, then tk+1 is an element of
∆∩(∆− 1) which contradicts the assumption that σt (k + 1) 6= i. Hence (D − tk+1)∩
(D ∪ (D + 1)) = D ∩ (D + tk+1) . Consequently, µt(k + 1) = µt(k) ·#D ∩ (D + tk+1)
by the definition of µt. The case tk+1 ∈ ∆− 1 is similar to tk+1 ∈ ∆.

The case σt(k) = −1 is handled using arguments similar to those used for σt(k) = 1
above, replacing ∆ by n−∆ and ∆− 1 by n−∆− 1.

Lemma 5.5. Let C = Cn,D be given. Suppose t ∈ F+ does not admit a finite n-ary
representation and σt(k) = ±1 for all k ≥ 0. For each k, every n-ary interval of Ck
in the interval or potential interval case contains points of C ∩ (C + t).

Proof. Let J0 = 1
nk

(C0 + h) be an n-ary interval of Ck. Suppose J0 is in the interval
case. Let xk be the right hand endpoint of J0. Since 0 < t − btck <

1
nk

and J0 has
length 1

nk
then xk ∈ J0 ∩ (J0 + t− btck) . Now J0 ∩ (J0 + t− btck) ⊆ Ck ∩ (Ck + t)

follows from J0 ⊆ Ck + btck . Consequently, xk is in Ck ∩ (Ck + t) .
Supposing J0 is in the potential interval case and xk be the left hand endpoint of

J0, an argument similar to the one above shows that xk is in Ck ∩ (Ck + t) .
Suppose J0 is in the interval case. Then σt (k) = 1 by assumption and all n-ary

intervals in Ck are either in the interval case or one of the empty cases. Since t ∈ F+

it follows from Lemma 5.1 and Lemma 4.3 that at least one subinterval J1 in the
refinement of J0 is either in the interval or the potential interval case. Similarly, if
J0 is in the potential interval case it follows that one of the subintervals J1 in the
refinement of J0 is in the interval or potential interval case.

By induction we get a sequence xj of points and a sequence of intervals Jj such
that Jj+1 ⊂ Jj and xj ∈ Cj ∩ (Cj + t) ⊆ Jj . By the nested interval theorem xj →
x ∈

⋂
Jj ⊂ J0. By (3.1) x ∈ C ∩ (C + t) .

Theorem 5.3 shows that the assumptions of the previous Lemmas are met whenever
t does not admit finite n-ary representation andD is sparse. Example 7.5 demonstrates
we may “over” count when t does not meet the σt (k) = ±1 requirement.

6. ESTIMATING THE HAUSDORFF MEASURE OF C ∩ (C + t)

Let H s (K) denote the s-dimensional Hausdorff measure of a compact set K and
let |K| := sup {|x− y| | x, y ∈ K} denote the diameter. Given ε > 0, a collection of
closed intervals {Uα} is an ε-cover of K if K ⊂

⋃
Uα and ε > |Uα| > 0. Define

H s
ε (K) := inf

{∑
|Uα|s

}
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to be the approximation to the Hausdorff measure of K by ε-covers so that

H s (K) = lim
ε→0

H s
ε (K) . (6.1)

The approximating measure H s
ε (K) can be equivalently defined using a collection

of arbitrary open or closed sets, each having appropriate diameter. The closed intervals
definition is natural for this paper based on the construction of C ∩ (C + t).

The Hausdorff dimension of C is logn (m) and 0 < H logn(m) (C) < ∞ since C is
self-similar by [12]. Since C ∩ (C + t) ⊆ C, then 0 ≤ dim (C ∩ (C + t)) ≤ logn (m)
for any real t and if 0 < dim (C ∩ (C + t)) < logn (m) then t does not admit finite
n-ary representation by Theorem 4.1. Our goal is to estimate the Hausdorff measure
of C ∩ (C + t).

6.1. INFINITE n-ARY REPRESENTATIONS

We use the counting method of Lemma 5.4 to estimate the Hausdorff measure of
C ∩ (C + t) whenever t does not admit finite n-ary representation.

Theorem 6.1. Let C = Cn,D be given. Suppose t is an element of F+ which
does not admit finite n-ary representation and σt (k) = ±1 for all k. If Lt :=
lim infk→∞

{
mνt(k)−k·βt

}
and s := βt logn (m), then

m−βt · Lt ≤H s (C ∩ (C + t)) ≤ Lt.

Proof. We begin by showing H s (C ∩ (C + t)) ≤ Lt. Let N ∈ N0 be given and k ≥ N
be arbitrary so that n−N ≥ n−k.

Lemma 5.4 shows that Ck ∩ (Ck + btck) consists of mνt(k) closed n-ary inter-
vals which cover C ∩ (C + t). Let Vi denote the ith such interval of length 1

nk

so that {Vi}m
νt(k)

i=1 is the collection of intervals or potential intervals chosen from
Ck ∩ (Ck + btck). Then

H s
n−N (C ∩ (C + t)) ≤

mνt(k)∑
i=1

|Vi|s = mνt(k) ·
(

1

nk

)βt logn(m)

= mνt(k)−k·βt . (6.2)

Since k ≥ N is arbitrary, then H s
n−N (C ∩ (C + t))≤ lim infk→∞

{
mνt(k)−k·βt

}
and

H s (C ∩ (C + t))≤Lt by equation (6.1). Thus, if Lt = 0 then H s (C ∩ (C + t)) = 0
and we are finished.

Suppose 0 < Lt < ∞. Then for arbitrarily small δ > 0, there exists N (δ) ∈ N
such that Lt − δ ≤ mνt(k)−k·βt for all k ≥ N (δ). Let ε = n−N(δ).

Let {Uα} be an arbitrary closed ε-cover of C ∩ (C + t). By compactness of
C ∩ (C + t), there exists a finite subcover {Ui}ri=1 for some integer r. For each
1 ≤ i ≤ r, let hi denote the integer satisfying(

1

n

)hi+1

≤ |Ui| <
(

1

n

)hi
.
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Let k ≥ max {hi + 1 | 1 ≤ i ≤ r} be arbitrary. For each 1 ≤ i ≤ r, define Ui to
be the collection of n-ary intervals J ⊂ Ck ∩ (Ck + btck) such that J is in either
the potential interval or the interval case and J ∩ Ui 6= ∅. Since σt (k) = ±1 by
assumption, then each J ∈ Ui contains points of C ∩ (C + t) by Lemma 5.5. Thus,⋃r
i=1 Ui = Ck ∩ (Ck + btck).
For any j, since the set Cj ∩

(
Cj + btcj

)
contains mνt(j) intervals which all

transition the same way, then each interval K ⊂ Chi ∩
(
Chi + btchi

)
transitions to

mνt(k)−νt(hi) intervals or potential intervals of Ck ∩ (Ck + btck).
If there exists an n-ary interval J such that both J and J − 1

nhi
are intervals in

Chi∩
(
Chi + btchi

)
then J is in both the interval and potential interval case. However,

σt (hi) =
√
−1 by Lemma 5.2, which contradicts our assumption. Thus, any pair of

n-ary intervals of Chi∩
(
Chi + btchi

)
are separated by at least 1

nhi
. Due to the diameter

1
nhi

> |Ui|, each Ui intersects at most one interval of Chi ∩
(
Chi + btchi

)
. Thus,

mνt(k) = #

(
r⋃
i=1

Ui

)
≤

r∑
i=1

#Ui ≤
r∑
i=1

mνt(k)−νt(hi).

Hence, 1 ≤
∑r
i=1m

−νt(hi). Furthermore, (Lt − δ)m−νt(hi) ≤ m−hi·βt since
hi ≥ N (δ) by choice of ε.

r∑
i=1

|Ui|s ≥
r∑
i=1

(
1

n

)(hi+1)βt logn(m)

≥ m−βt ·
r∑
i=1

m−βt·hi ≥

≥ m−βt (Lt − δ)
r∑
i=1

m−νt(hi) ≥ m−βt (Lt − δ) . (6.3)

Since {Uα} is an arbitrary ε-cover of C ∩ (C + t) then H s
ε (C ∩ (C + t)) ≥

m−βt (Lt − δ). Furthermore, ε = n−N(δ) → 0 as δ → 0 so that

m−βtLt = lim
δ→0

(
m−βt (Lt − δ)

)
≤ lim
ε→0

H s
ε (C ∩ (C + t)) = H s (C ∩ (C + t)) .

Suppose Lt = ∞. Then for each j ∈ N there exists N (j) ∈ N such that
j ≤ mνt(k)−k·βt for all k ≥ N (j). Choose ε such that n−N(dmβt ·je) > ε > 0. Thus we
can replace (Lt − δ) by

⌈
mβt · j

⌉
in equation (6.3) so that

r∑
i=1

|Ui|s ≥ m−βt ·
⌈
mβt · j

⌉ r∑
i=1

m−νt(hi) ≥ j.

Hence, H s (C ∩ (C + t)) ≥ limj→∞ (j) =∞.

Theorem 6.1 shows that C ∩ (C + t) is an s-set [8] whenever 0 < Lt < ∞ and
C ∩ (C + t) is not self-similar for any t such that Lt is either zero or infinite. Further-
more, if C = Cn,D is sparse and t ∈ F+ does not admit finite n-ary representation,
then m−βt · Lt ≤H s (C ∩ (C + t)) ≤ Lt by Theorem 5.3.
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Remark 6.2. The proof of Theorem 6.1 calculates the upper bound Lt using the
collection of n-ary intervals chosen from Ck ∩ (Ck + btck). When D is sparse, then
Ck∩(Ck + t) consists ofmνt(k) intervals of length `k ≤ 1

nk
which also cover C∩(C + t)

by Lemma 5.4. Choosing this cover, we can replace 1
nk

by `k in equation (6.2) and

define L̃t := lim infk→∞

{
mνt(k) (`k)

βt logn(m)
}

so that

H s (C ∩ (C + t)) ≤ L̃t ≤ Lt.

This may calculate a more accurate upper bound for the Hausdorff measure of
C ∩ (C + t), however it is more difficult to calculate L̃t since `k depends directly on t.
Example 7.3 shows that the Hausdorff measure may be strictly smaller than L̃t.

Corollary 6.3. Let C = Cn,D be given. If t ∈ F+ does not admit finite n-ary
representation and σt (k) = ±1 for all k, then the Hausdorff dimension of C ∩ (C + t)
is βt logn (m).

Proof. The dimension is determined by Theorem 6.1 whenever 0 < Lt <∞. We need
to show the result when Lt is zero or infinite. Let ε > 0 be given and {Ui}ri=1 an
arbitrary ε-cover of C ∩ (C + t) as in the proof of Theorem 6.1. Let N (ε) ∈ N be such
that ε > n−N(ε).

Suppose Lt = ∞. Choose an arbitrary value γ such that βt < γ and choose
δ such that γ − βt > δ > 0. By definition of βt there exists a subsequence {hj}
and integer M (δ) such that νt(hj)

hj
< βt + δ < γ for all j ≥ M (δ). Then for any

j ≥ max {N (ε) ,M (δ)} we can replace βt by γ in the proof of Theorem 6.1 so that

H γ logn(m)
ε (C ∩ (C + t)) ≤ lim inf

j→∞

{
mνt(hj)−hj ·γ

}
= lim inf

k→∞

{
m

(
νt(hj)
hj
−γ

)
hj

}
≤

≤ lim inf
k→∞

{
m(βt+δ−γ)hj

}
= 0.

Since ε > 0 is arbitrary, then H γ logn(m) (C ∩ (C + t)) = 0 for any γ > βt.
Suppose Lt = 0. Choose an arbitrary value γ such that 0 ≤ γ < βt. Let Γt :=

lim infk→∞
{
mνt(k)−k·γ

}
. Choose δ such that βt − γ > δ > 0 and choose M (δ) such

that Γt − δ ≤ mνt(k)−k·γ for all k ≥ M (δ). Thus, we can replace βt by γ and Lt by
Γt in the proof of Theorem 6.1 so that H γ logn(m) (C ∩ (C + t)) is infinite whenever
Γt =∞.

Since m(βt−δ−γ) > 1, then for any k ≥ max {N (ε) ,M (δ)},

mνt(k)−k·γ = m

(
νt(k)
k −γ

)
k ≥ m(βt−δ−γ)k ≥ m(βt−δ−γ)N(ε).

Hence, Γt ≥ lim infN(ε)→∞
{
m(βt−δ−γ)N(ε)

}
=∞ so that H γ logn(m) (C ∩ (C + t)) =

∞ for any 0 ≤ γ < βt.

Corollary 6.4. Let C = Cn,D be sparse and β, y ∈ R such that 0 < β < 1 and
0 < y <∞. Define

Fβ,y :=
{
x | m−2β · y ≤H β·logn(m) (C ∩ (C + x)) ≤ y

}
.

Then Fβ,y is dense in F .
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Proof. Choose 0 < β < 1 and 0 < y <∞. It is sufficient to show that F+
β,y is dense in

F+. Let t ∈ F+ and ε > 0 be given. We will construct the necessary x = 0.nx1x2 . . ..
Let k ∈ N such that ε >

(
1
n

)k−1
> 0. Choose xj = tj for all 1 ≤ j ≤ k − 1 so that

|x− t| < ε regardless of any choice of remaining digits xj for j ≥ k. If σx (k − 1) = 1
then choose xk = 0 so that σx (k) = 1. Otherwise, if σx (k − 1) = −1 then choose
xk = n− dm so that σx (k) = 1. Thus σx (k) = 1 and we begin in the interval case.

Since k is finite, then 0 < mνt(k)−kβ < ∞. If xj = 0 then µx (xj) = m so that
νx (j + 1) = νx (j) + 1 and mνx(j)−j·β < mνx(j+1)−(j+1)β . Similarly, if xj = dm then
µ (xj) = 1 so that νx (j + 1) = νx (j) and mνx(j)−j·β > mνx(j+1)−(j+1)β . For all j ≥ k,
choose the remaining digits of x such that

xj+1 =

{
0 if mνx(j)−j·β ≤ y,
dm if mνx(j)−j·β > y.

Thus, if xj+1 = dm then mνx(j+1)−(j+1)·β = m−βmνx(j)−j·β > y ·m−β so that

y ·m−β ≤ lim inf
j→∞

{
mνx(j)−j·β

}
≤ y.

Therefore, y ·m−2β ≤H β logn(m) (C ∩ (C + x)) ≤ y by Theorem 6.1.

It would be ideal to construct x such that Lx = y in the proof of Corollary 6.4,
however this is not always possible. Example 6.5 shows a class of sparse Cantor sets
Cn,D such that Lt is either infinite or some element of a countable, nowhere dense
subset of R for all t ∈ F+.

Example 6.5. Let n ≥ 3 and D = {0, d} be given for some 2 ≤ d < n so that
C = Cn,D is sparse. Choose β = a

b for some integers 0 ≤ a ≤ b and b 6= 0. Then
µt(j)
µt(j−1) = 1, 2 for any t ∈ F+ and j ∈ N0. Define pk := # {j ≤ k | µ (j) = 2µt (j − 1)}
and qk := # {j ≤ k | µt (j) = µt (j − 1)} for each k so that pk, qk ∈ N0 and k = pk+qk.
Thus,

νt (k)− kβ = pk − (pk + qk)β =
1

b
(pkb− a (pk + qk)) ∈ 1

b
Z.

If lim infk→∞ {νt (k)− kβ}=−∞ then Lt = 0 and if lim infk→∞ {νt (k)− kβ}=∞
then Lt = ∞. Otherwise, any subsequence νt (kj) − kjβ → r is a bounded sequence
of 1

bZ. Hence, if Lt is finite then Lt ∈
{

2
r
b | r ∈ Z

}
and there is no real x such that

1 < Lx <
b
√

2 for this choice of Cn,D.

6.2. FINITE n-ARY REPRESENTATIONS

According to Theorem 4.1, if t ∈ F+ admits finite n-ary representation then
C ∩ (C + t) is either finite, or a finite collection of sets 1

nk
(C + hj). Therefore, the

Hausdorff logn (m)-dimensional measure is either zero or can be expressed in terms
of H s (C) for s := logn (m).
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The exact Hausdorff measure of many Cantor sets in [0, 1] can be calculated by
methods of [1,20,21]; this includes deleted digits Cantor sets C = Cn,D. The proof of
Theorem 8.6 in [8] estimates the Hausdorff measure of an arbitrary self-similar set and
gives the bounds 1

3n ≤ H s (Cn,D) ≤ 1. The basic idea of the proof of Theorem 6.1
leads to bounds on H s (Cn,D) , we include these bounds for completeness. This is
much simpler than the proof of Theorem 6.1 since the needed versions of Lemma 5.4
and Lemma 5.5 are trivial.

Theorem 6.6. Let C = Cn,D be given and s := logn (m). Then 1
m ≤H s (C) ≤ 1.

Proof. Let Vi denote the ith n-ary interval of Ck so that Ck =
⋃mk
i=1 Vi is a cover

of C. Then
∑mk

i=1 |Vi|
s

= mk ·
(
n−k

)logn(m)
= 1 for all k ∈ N0 so that H s (C) ≤

H s
n−k (C) ≤ 1.
The proof of the lower bound is similar to the proof of Theorem 6.1 with minor

variations. Let ε > 0 be given and {Ui}ri=1 be an arbitrary closed ε-cover of C for some
integer r. For each 1 ≤ i ≤ r, let hi denote the integer satisfying n−hi−1 ≤ |Ui| < n−hi .

Let k ≥ max {hi + 1 | 1 ≤ i ≤ r} be arbitrary and, for each 1 ≤ i ≤ r, define Ui
to be the collection of n-ary intervals J selected from Ck such that J ∩Ui 6= ∅. Each
J ∈ Ui contains points of C by the Nested Intervals Theorem so that

⋃r
i=1 Ui = Ck

and each interval K ⊂ Chi contains mk−hi n-ary intervals of Ck.
Since 1

nhi
> |Ui|, then each Ui intersects at most two intervals of Chi . Suppose Ui

intersects bothK andK− 1
nhi

for some n-ary intervalK ⊂ Chi and letK (p) ⊂ Ck∩K
denote the n-ary subintervals of K for 1 ≤ p ≤ mk−hi . Note that if Ui ∩K (p) 6= ∅
for some p then Ui ∩

(
K (p)− 1

nhi

)
is empty unless K (p) contains an endpoint of

Ui and |Ui| > n−1
nhi+1 . Thus, Ui intersects at most mk−hi + 1 intervals of Ck so that

#Ui ≤ mk−hi + 1 for all 1 ≤ i ≤ r and

mk = #

(
r⋃
i=1

Ui

)
≤

r∑
i=1

#Ui ≤
r∑
i=1

(
mk−hi + 1

)
.

Therefore, 1− r ·m−k ≤
∑r
i=1m

−hi so that

r∑
i=1

|Ui|s ≥
r∑
i=1

(
1

n

)(hi+1)s

≥ 1

m
·
r∑
i=1

m−hi ≥ 1

m

(
1− r ·m−k

)
. (6.4)

Since {Ui}ri=1 is an arbitrary ε-cover of C and equation (6.4) holds for any suffi-
ciently large k, then H s

ε (C) ≥ limk→∞
{

1
m

(
1− rm−k

)}
= 1

m for any ε > 0. Hence,
1
m ≤H s (C).

Let n = 9, D = {0, d, 8} for some integer 0 < d < 8, and s := log9 (3) = 1
2 . If

d = 4 then D is uniform and H s
(
C9,{0,4,8}

)
= 1. However, if d = 2 then D is regular

and it is shown in example 7.3 that H s
(
C9,{0,2,8}

)
< 1.

Corollary 6.7. Let C = Cn,D be arbitrary, s := logn (m), and t ∈ F+ such that
t = 0.nt1t2 . . . tk. Then C ∩ (C + t) = A ∪B and the following hold:
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1. If A is nonempty, then A =
⋃a
j=1

1
nk

(C + hj) for some integer a and a
mk+1 ≤

H s (C ∩ C + t) ≤ a
mk
. In particular, if D is sparse then a = µt (k).

2. If A is empty, then H 0 (C ∩ (C + t)) = #B. If D is sparse then #B =
µt+n−k (k) + µt−n−k (k).

Proof. The general statements follow immediately from Theorem 6.6 and Theo-
rem 4.1. We only need show the result when D is sparse. Without loss of generality,
assume that k is the minimal element of {j | t = 0.nt1 . . . tj}.

Suppose A is nonempty and s = logn (m). Since 1
nj > t − btcj > 0 for any

1 ≤ j < k, we can apply Lemma 4.3 so that Ck ∩ (Ck + btck) = Ck ∩ (Ck + t)
consists of µt (k) disjoint intervals. Since each such interval refines to 1

nk
(C + hj) and

H s (B \A) = 0, it follows that a = µt (k).
Suppose A is empty so that B contains a finite number of isolated points by

definition of F . Any n-ary interval J ⊂ Ck in the potential interval case is also an
n-ary interval of Ck+btck+ 1

nk
. Thus, J is in the interval case of Ck∩

(
Ck + btck + 1

nk

)
and B contains µt+n−k (k) points corresponding to potential intervals. Similarly, if
J ⊂ Ck ∩ (Ck + btck) is in the potentially empty case then J is an interval case of
Ck ∩

(
Ck + btck −

1
nk

)
and B contains µt−n−k (k) points corresponding to potentially

empty cases.
Since d − d′ ≥ 2 for all d, d′ ∈ D ⊂ ∆, then no point of B can be in both the

potential interval and potentially empty cases. Hence, #B = µt+n−k (k)+µt−n−k (k).

7. EXAMPLES

We use the results of the previous sections to estimate the Hausdorff measure of
C ∩ (C + t). The following examples demonstrate when the Hausdorff measure is
equal to both L̃t and Lt (Example 7.1), equal to L̃t but less than Lt (Example 7.2),
or less than both L̃t and Lt (Example 7.3).

Example 7.1. Let C = Cn,D be sparse such that H s (C) = 1 for s = logn (m). This
is true for the class of uniform sets such that dm = n−1 by [8]. Choose t = 0.nt1t2 . . . tk
for some k such that σk (t) = 1. Then νt (k + j) = νt (k) + j for all j ≥ 0 and βt = 1
so that

Lt = lim inf
j→∞

{
mνt(k+j)−(k+j)βt

}
= mνt(k)−k.

Since C ∩ (C + t) =
⋃
j

1
nk

(C + hj) consists of mνt(k) disjoint copies of 1
nk
C, then

H s (C ∩ (C + t)) = mνt(k)−k ·H s (C) = Lt.

Example 7.2. Let C = C3,{0,2} denote the Middle Thirds Cantor set and let t :=

0.320 = 3
4 . Then νt (k) =

⌊
k+1
2

⌋
for all k so that νt (2k) = k and νt (2k + 1) = k + 1.

Thus, βt = 1
2 so that νt (2k) − 2kβt = 0 and νt (2k + 1) − (2k + 1)βt = 1

2 . Hence,
Lt = lim infk→∞

{
1,
√

2, 1, . . .
}

= 1.
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Since `2k = 1
9k
− 1

9k

(
3
4

)
= 1

4·9k and `2k+1 = 1
3·9k −

1
3·9k

(
1
4

)
= 1

4·9k , then for
s := log9 (2),

L̃t = lim inf
k→∞

{
2νt(k)−k

(
1

4

)s}
= lim inf

k→∞

{(
9

4

)s
,

(
1

4

)s
,

(
9

4

)s
, . . .

}
=

(
1

4

)s
.

Therefore, H s (C ∩ (C + t)) ≤ L̃t < Lt. An upcoming paper, by the co-authors,
shows that the Hausdorff measure is exactly 4−s for this choice of Cn,D and t.

Example 7.3. Let n = 9 andD = {0, 2, 8} so that C = Cn,D is regular. Choose t := 0

so that for all k, νt (k) = k, `k = 1
nk

, βt = 1, and L̃t = Lt = lim inf
{
mνt(k)−kβt

}
= 1.

Since C ∩ (C + t) = C, we will show that H s (C) < 1 for s := log9 (3) = 1
2 .

Let ε > 0 be given and choose k such that ε > 1
nk−1 . Let J = 1

nk−1 (C0 + hj)
be an arbitrary n-ary interval of Ck−1. Then the refinement of J consists of
three subintervals J (1) = 1

nk
(C0 + hjn), J (2) = 1

nk
(C0 + hjn+ 2), and J (3) =

1
nk

(C0 + hjn+ 8). Choose U2j−1 = 1
nk

(3C0 + hjn) so that J (1)∪ J (2) ⊂ U2j−1 and
choose U2j = J (3). Since there are 3k−1 such intervals J and ε> |J |> |U2j−1|> |U2j |,
then the collection {Uj}2·3

k−1

j=1 is an ε-cover of C. Therefore,

H s
ε (C) ≤

2·3k−1∑
j=1

|Uj |s =

3k−1∑
j=1

|U2j−1|s +

3k−1∑
j=1

|U2j |s =

= 3k−1 ·
(

3

9k

)s
+ 3k−1 ·

(
1

9k

)s
=

√
3 + 1

3
< L̃t.

Since ε > 0 is arbitrary, then 1
3 ≤H s (C) ≤

√
3+1
3 according to Theorem 6.6.

Theorem 6.1 shows that the Hausdorff measure of C ∩ (C + t) is equal to Lt
whenever Lt is zero or infinite. In the following example we construct x, y ∈ F such
that Lx = ∞ and Ly = 0 so that the sets C ∩ (C + x) and C ∩ (C + y) are not
self-similar.

Example 7.4. Let n = 11, D = {0, 7, 10}, and t := 0.1170 so that νt (k) =
⌊
k+1
2

⌋
for

all k. Thus, νt (2k) = k and νt (2k + 1) = k + 1 so that βt = 1
2 and s := 1

2 log11 (3).
Define x := 0.11x1x2 . . . and y := 0.11y1y2 . . . such that

xk =

{
0 if k = 1 + 2j2 for some integer j,
tk otherwise,

yk =

{
7 if k = 2j2 for some integer j,
tk otherwise.
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Since µ
(
t2j2
)

= 1 and µ
(
y2j2

)
= 0 for each integer j, and µ (tk) = µ (yk) other-

wise, then νy
(
2j2
)

= νt
(
2j2
)
− j for each j > 0. Thus, if 2j2 ≤ k < 2 (j + 1)

2 for
some j then νy (k) = νt (k)− j so that βy = βt = 1

2 . Furthermore,

Ly ≤ lim inf
j→∞

{
3νy(2j

2)−βy2j2
}

= lim inf
j→∞

{
3νt(2j

2)−j−j2
}

=

= lim inf
j→∞

{
3−j
}

= 0.

Therefore, H s (C ∩ (C + y)) = Ly = 0 by Theorem 6.1.
Similarly, µ

(
t1+2j2

)
= 0 and µ

(
x1+2j2

)
= 1 for each integer j, and µ (tk) = µ (xk)

otherwise. Thus, νx
(
1 + 2j2

)
= νt

(
1 + 2j2

)
+ j for each j > 0 and νx (k) = νt (k) + j

whenever 2j2 ≤ k < 2 (j + 1)
2. Therefore, βx = βt = 1

2 and for each k,

3νx(k)−βx(k) = 3νt(k)+j−βx(k) ≥ 3
1
2k+j−

1
2k = 3j .

Hence, H s (C ∩ (C + x)) = Lx ≥ lim infj→∞
{

3j
}

=∞.

Theorem 6.1 requires that t does not admit finite n-ary representation and that
σt (k) = ±1 for all k. The infinite representation requirement allows us to ignore the
potentially empty and empty cases by Lemma 4.3. The requirement that σt (k) = ±1
for all k allows us to not only count the total number of intervals and potential
intervals of Ck using the function µt (k), but also guarantees that all intervals and
potential intervals contain points in C ∩ (C + t).

Note that Lt is calculated by counting all interval and potential interval cases at
each step k. The following example demonstrates when potential interval cases do not
lead to points in C∩(C + t), thus showing the necessity of Lemma 5.4 and Lemma 5.5
to the calculations in Theorem 6.1.

Example 7.5. Let D = {0, 2, 4, 7, 10, . . . , 4 + 3r} for some integer r > 2 and
n > 4 + 3 (r + 1) so that C = Cn,D is not sparse. Let t := 0.n2 so that σt (k) = i
for all k. For each k, Ck ∩ (Ck + btck) contains 2k interval cases and r · 2k−1 potential
interval cases, however the potential interval cases never contain points in C∩ (C + t)
since 2 is neither in n−∆ nor n−∆− 1. By calculation,

βt = lim inf
k→∞

{
logm (2 + r) + logm

(
2k−1

)
k

}
= logm (2) ,

Lt = lim inf
k→∞

{
(2 + r) · 2k−1 ·m−βtk

}
=

2 + r

2
.

Thus, m−βt = 1
2 and

[
m−βtLt, Lt

]
=
[
2+r
4 , 2+r2

]
by the same method as Theorem 6.1.

We will show that the Hausdorff measure at most 1 < 2+r
4 :

Since potential interval cases never contain points in C ∩ (C + t), we can in-
stead perform the same calculations using only the interval cases as a cover of
C ∩ (C + t). Thus, βt = logm (2) and s := logn (2) so that H s (C ∩ (C + t)) ≤
lim infk→∞

{
2k ·m−βtk

}
= 1. Thus, the calculation of Lt gives an incorrect result

even though βt is calculated properly.
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8. OPEN QUESTIONS

It is known that integral self-affine sets must have rational Lebesgue measure [2] so,
perhaps, the range of t 7→H s (C ∩ (C + t)) is not all of the interval [0,∞). See also
Example 6.5.

It is likely that our methods provided an estimate of the Hausdorff measure of
Cn,D1

∩ (Cn,D2
+ t) , simply by replacing the sparcity condition by the assumption

that |δ − δ′| ≥ 2 for all δ 6= δ′ in D1 −D2.
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