PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of hydrated Ca2+ and Mg2+ complexes on the sulfidization of smithsonite : density functional based tight binding (DFTB+) study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ca2+ and Mg2+ are the most dominating unavoidable ions in the smithsonite flotation. In this paper, the effect of Ca2+ (Mg2+) on the surface of smithsonite sulfidization in a system where water molecules are present was investigated using density functional based tight binding (DFTB+) simulations for the first time. The results indicated that the adsorption of hydrated Ca2+ complexes is stronger than that of hydrated Mg2+ complexes on the hydrated smithsonite (101) surface. In addition, at low concentrations of sodium sulfide, there is no adsorption of HS- on the surface pre-adsorbed with hydrated Ca2+ complexes, but only on the surface pre-adsorbed with hydrated Mg2+ complexes. At high concentrations of Na2S, S2- weakens the adsorption of hydrated Ca2+ complexes due to competitive adsorption, but the presence of S2- could desorb hydrated Mg2+ complexes from the surface. The results compared the differences in effects of Ca2+ and Mg2+ on smithsonite sulfidization, which could provide an atomic scale basis for researching the surface sulfidization of oxide minerals.
Słowa kluczowe
Rocznik
Strony
art. no. 156040
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
autor
  • School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
  • Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning, 530004, China
autor
  • School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
  • Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning, 530004, China
Bibliografia
  • ABKHOSHK, E., JORJANI, E., AL-HARAHSHEH, M., RASHCHI, F., NAAZERI, M., 2014. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy. 149, 153–167.
  • ARAÚJO, A.C.A., LIMA, R.M.F., 2017. Influence of cations Ca2+, Mg2+ and Zn2+ on the flotation and surface charge of smithsonite and dolomite with sodium oleate and sodium silicate. Int. J. Miner. Process. 167, 35–41.
  • BAI, X., LIU, J., WEN, S., WANG, Y., LIN, Y., 2020. Effect of Ammonium Salt on the Stability of Surface Sulfide Layer of Smithsonite and its Flotation Performance. Appl. Surf. Sci. 514, 145851-1–145851-6.
  • BRANDENBURG, J.G., GRIMME, S., 2014. Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J. Phys. Chem. Lett. 5, 1785–1789.
  • CHEN, J.H., 2021. The interaction of flotation reagents with metal ions in mineral surfaces: A perspective from coordination chemistry. Miner. Eng. 171, 107067-1–107067-15.
  • CHEN, J.H., LONG, X.H., ZHAO, C.H., KANG, D., GUO, J., 2014. DFT calculation on relaxation and electronic structure of sulfide minerals surfaces in presence of H2O molecule. J. Cent. South Univ. 21, 3945–3954.
  • CHEN, Y.F., ZHANG, G.F., WANG, M.T., SHI, Q., LIU, D.Z., QI, 2019. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation. Miner. Eng. 132, 121–125.
  • CHEN, Y., LIU, M., CHEN, J.H., LI, Y.Q., ZHAO, C.H., MU, X., 2018. A density functional based tight binding (DFTB+) study on the sulfidization-amine flotation mechanism of smithsonite. Appl. Surf. Sci. 458, 454–463.
  • CHOI, T.H., LIANG, R., MAUPIN, C.M., VOTH, G.A., 2013. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions. J. Phys. Chem. B. 117, 5165–5179.
  • CUI, W.Y., CHEN, J.H., 2021. Insight into mineral flotation fundamentals through the DFT method. Int. J. Min. Sci. Technol. 36(6), 983–994.
  • DENG, R.D., HU, Y., KU, J.G., MA, Y.Q., YANG, Z.G., 2018. Ion migration law in flotation pulp and its influence on the separation of smithsonite and quartz. Sep. Sci. Technol. 53(5), 833–841.
  • DIWAKER, 2014. Spectroscopic (FT-IR, H-1, C-13 NMR, UV), DOS and orbital overlap population analysis of copper complex of (E)-4-(2-(4-nitrophenyl) diazenyl)-N, N bis ((pyridin-2-yl) methyl) benzamine by density functional theory. Spectrochim. Acta, Part A. 136, 1932-1940.
  • EJTEMAEI, M., GHARABAGHIB, M., IRANNAJAD, M., 2014. A review of zinc oxide mineral beneficiation Rusing flotation method. Adv. Colloid Interface Sci. 206 (1), 68–78.
  • EJTEMAEI, M., IRANNAJAD, M., GHARABAGHI, M., 2011. Influence of important factors on flotation of zinc oxide mineral using cationic,anionic and mixed (cationic/anionic) collectors. Miner. Eng. 24, 1402–1408.
  • ELSTNER, M., POREZAG, D., JUNGNICKEL, G., ELSNER, J., HAUGK, M., FRAUENHEIM, TH., SUHAI, S., SEIFERT, G., 1998. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 7260–7268.
  • FANG, C.J., YU, S.C., WEI, X.Y., PENG, H., OU, L., ZHANG, G., WANG, J. 2019. The cation effect on adsorption of surfactant in the froth flotation of low-grade diasporic bauxite. Miner. Eng. 144, 106051-1–106051-7.
  • FENG, B., LUO, X.P., 2013. The solution chemistry of carbonate and implications for pyrite flotation. Miner. Eng. 53, 181–183.
  • FENG, Q.C., WEN, S.M., BAI, X., CHANG, W.H., CUI, C.F., ZHAO, W.J., 2019. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 137, 1–9.
  • FENG, Q.C., WEN, S.M., CAO, Q.B., DENG, J.S., ZHAO, W.J., 2016a. The effect of chloride ions on the activity of cerussite surfaces. Minerals. 6, 92.
  • FENG, Q.C., WEN, S.M., ZHAO, W.J., DENG, J.S., XIAN, Y.J., 2016b. Adsorption of sulfide ions on cerussite surfa ces and implications for flotation. Appl. Surf. Sci. 360, 365–372.
  • FUNG, V., GANESH, P., SUMPTER, B.G., 2022. Physically Informed Machine Learning Prediction of Electronic Density of States. Chem. Mater. 34, 4848-4855.
  • FRENZEL, J., OLIVEIRA, A.F., JARDILLIER, N., 2004. Semi-relativistic, self-consistent charge Slater–Koster tables for density-functional based tight-binding (DFTB) for materials science simulations. TU-Dresden.
  • GOWDA, B. T., BENSON, S.W., 1983. lon-water interaction potentials for alkali metal cations and halide anions. J. Chem. Phys. 79, 1235–1242.
  • HALES, M.C., FROST, R.L., 2008. Thermal analysis of smithsonite and hydrozincite. J. Therm. Anal. Calorim. 91, 855–860.
  • HERRERA-URBINA, R., SOTILLO, F.J., 1998. D.W. Fuerstenau, Amyl xanthate uptake by natural and sulfide-treated cerussite and galena. Int. J. Miner. Process. 55, 113–128.
  • HOSSEINI, S.H., FORSSBERG, E., 2006. Smithsonite flotation using potassium amyl xanthate and hexylmercaptan. Miner. Process. Extr. Metall. Rev. 115, 107–112.
  • IRANNAJAD, M., EJTEMAEI, M., GHARABAGHI, M., 2009. The effect of reagents on selective flotation of smithsonite calcite quartz. Miner. Eng. 22, 766–771.
  • KALICHINI, M., CORINI, K.C., O’CONNORI, C.T., SIMUKANGAII, S., 2017. The role of pulp potential and the sulphidization technique in the recovery of sulphide and oxide copper minerals from a complex ore. J. South. Afr. Inst. Min. Metall. 117 (8), 803–810.
  • KIERSZNICKI, T., MAJEWSKI, J., MZYK, J., 1981. 5-alkylsalicylaldoximes as collectors in flotation of sphalerite, smithsonite and dolomite in a Hallimond tube. Int. J. Miner. Process. 7, 311–318.
  • LEJAEGHERE, K., VAN SPEYBROECK, V., VAN OOST, G., COTTENIER, S., 2014. Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals. Crit. Rev. Solid State Mater. Sci. 39, 1–24.
  • LI, H.L., XU, W.N., JIA, F.F., LI, J.B., SONG, S.X., NAHMAD, Y., 2020. Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review. Int. J. Miner. Metall. Mater. 27, 857–871
  • LI, M.X., JIAN, S., ZHAO, W.J., 2013. Effect of Ca2+ and Mg2+ on Floatability of Smithsonite and Hemimorphite. Adv. Mater. Res. 813, 298–301.
  • LIU, C., ZHANG, W.C., SONG, S.X., LI, H.Q., LIU, Y., 2019. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2,4-tricarboxylic acid as a depressant. Powder. Technol. 352, 11–15.
  • LIU, J., ZENG, Y., EJTEMAEI, M., NGUYEN, A.V., WANG, Y., WEN, S.M., 2019. DFT simulation of S-species interaction with smithsonite (0 0 1) surface: Effect of water molecule adsorption position. Results Phys. 15, 102575-1–102575-5.
  • LIU, M., CHEN, J.H., CHEN, Y., ZHU, Y.G., 2020. Interaction between smithsonite and carboxyl collectors with differentmolecular structure in the presence of water: A theoretical and experimental study. Appl. Surf. Sci. 510, 145410-1–145410-10.
  • LIU, W.L., SUN, W., HU, Y.H., 2012. Effects of water hardness on selective flocculation of diasporic bauxite. Trans, Nonferrous Met. Soc. China 22, 2248−2254.
  • LUO, A.R., CHEN, J.H., 2022. Effect of hydration and hydroxylation on the adsorption of metal ions on quartz surfaces: DFT study. Appl. Surf. Sci. 595, 153553-1–153553-12.
  • LUO, Y.J., OU, L.M., CHEN, J.H., ZHANG, G.F., JIN, S.Z., XIA, Y.Q., ZHU, B.H., ZHOU, H.Y., 2021a. DFT insights into the sulfidation mechanism of Fe-impurity smithsonite. Miner. Eng. 170, 107057-1–107057-10.
  • LUO, Y.J., OU, L.M., CHEN, J.H., ZHANG, G.F., XIA, Y.Q., ZHU, B.H., ZHOU, H.Y., 2021b. Effects of defects and impurities on the adsorption of H2O on smithsonite (101) surfaces: Insight from DFT-D and MD. Colloids Surf., A. 628, 127300-1–127300-13.
  • LUO, Y.J., OU, L.M., ZHANG, G.F., CHEN, J.H., LI, Y.Q., SHI, Q., ZHU, B.H., XIA, Y.Q., CHEN, S.Y., ZHANG, Z.J., MAI, Q.Y., Zhou, H., Zhou, H.Y., 2021. The effect of surface vacancy on adsorption of HS on smithsonite (1 0 1) surface: A DFT study. Colloids Surf., A. 624, 126713-1–126713-13.
  • LUO, Y.J., ZHANG, G.F., LI, C., MAI, Q.Y., LIU, H.J., ZHOU, H., SHI, Q., 2019. Flotation separation of smithsonite from calcite using a new depressant fenugreek gum. Colloids Surf., A. 582, 123794-1–123794-7.
  • LUO, Y.J., ZHANG, G.F., MAI, Q., LIU, H.J., LI, C.B., FENG, H.G., 2020. Flotation separation of smithsonite from calcite using depressant sodium alginate and mixed cationic/anionic collectors. Colloids Surf., A. 586, 124227-1–124227-8.
  • MONKHORST, H.J., PACK, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192.
  • NUNES, A.P.L., PERES, A.E.C., DE ARAUJO, A.C., VALADÃO, G.E.S., 2011. Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J. Colloid Interface Sci. 361, 632–638.
  • REICH, M., BECKER, U., 2006. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chem. Geol. 225, 278–290.
  • SEIFERT, G., 2007. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme. J. Phys. Chem. A. 111, 5609–5613.
  • SELLI, D., FAZIO, G., SEIFERT, G., VALENTIN, C.D., 2017. Water multilayers on TiO2 (101) anatase surface: assessment of a DFTB-Based Method, J. Chem. Theory Comput. 13, 3862–3873.
  • SUN, Q., FENG, Q.M., SHI, Q., 2019. Effect of depressants in the selective flotation of smithsonite and calcite Rusing potassium lauryl phosphate as collector. Physicochem. Probl. Miner. Process. 55(1), 89–96.
  • TEYCHENÉ, J., ROUX-DE BALMANN, H., MARON, L., GALIER, S., 2019. Investigation of ions hydration Rusing molecular modeling. J. Mol. Liq. 294, 111394-1–111394-11.
  • XIE, H.Y., SUN, R., WU, J.Z., FENG, D.X., GAO, L.K., 2020. A Case Study of Enhanced Sulfidization Flotation of Lead Oxide Ore: Influence of Depressants. Minerals. 10, 95–108.
  • ZHAO, C.H., CHEN, J.H., LI, Y.Q., DE, W., LI, W.Z., 2015. DFT study of interactions between calcium hydroxyl ions and pyrite, marcasite, pyrrhotite surfaces. Appl. Surf. Sci. 355, 577–581.
  • ZHEN, W., XU, L.H., WANG, J.M., WANG, L., XIAO, J.H., 2017. A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector. Appl. Surf. Sci. 426, 1141–1147.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38547b51-54ee-419c-8cd5-aa000a69516c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.