PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the application of CEM III with exposed aggregate as an alternative to CEM I for road pavements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena zastosowania cementu CEM III jako alternatywa CEM I do nawierzchni drogowych z eksponowanym kruszywem
Języki publikacji
EN
Abstrakty
EN
The article presents a results of study on the impact of replacing CEM I SR3/NA by CEM III/A LH/HSR/NA on the mechanical properties and durability of pavement concrete with exposed aggregate. Was used granite aggregate and washed sand. Water/cement (w / c) ratio in the tested concretes constituted 0.35 and 0.4 and part of the cement was replaced with a 5% addition of natural pozzolana - zeolite. Compressive strength tests were performed after 3, 7, 28 and 56 days, tests of tensile strength test by splitting method and flexural strength two-point loading tests. The characteristics of the air pores and the rate of water absorption by concrete surface of the samples cut out from the slabs with exposed aggregate were presented. The resistance of the surface to exfoliation after 56 cycles of freezing-thawing in NaCl solution was tested. Based on the results obtained, it was found that when designing the composition of the concrete intended for the upper layer of the pavement, it is necessary to ensure high tensile strength, appropriate in the XF4 environment and with the decrease in the w / c < 0.4, a reduction in capillary porosity of the cement paste is obtained, and the same the durability of concrete is increased due to the improved strength parameters in the contact zone between coarse aggregate grains and cement paste. The research also showed a significant influence of proper cure on the mechanical properties and durability of pavement concrete.
PL
W artykule przedstawiono wyniki badań wpływu zastąpienia CEM I SR3/NA przez CEM III/A LH/HSR/NA na właściwości mechaniczne i trwałość betonu nawierzchniowego z odsłoniętym kruszywem. Użyto kruszywa granitowe i płukany piasek. Współczynnik woda/cement (w / c) w badanych betonach wynosił 0,35 i 0,4, a część cementu zastąpiono 5% dodatkiem naturalnej pucolany (zeolit). Badania wytrzymałości na ściskanie wykonano po 3, 7, 28 i 56 dniach, badania wytrzymałości na rozciąganie metodą rozłupywania oraz badania wytrzymałości na zginanie dwupunktowe. Przedstawiono charakterystykę porów powietrza oraz szybkość wchłaniania wody przez powierzchnię betonu próbek wyciętych z płyt z odsłoniętym kruszywem. Zbadano odporność powierzchni na złuszczanie po 56 cyklach zamrażania/rozmrażania w roztworze NaCl. Na podstawie uzyskanych wyników stwierdzono, że przy projektowaniu składu betonu przeznaczonego na górną warstwę nawierzchni należy zapewnić wysoka wytrzymałość na rozciąganie, właściwą w środowisku XF4. Zauważono, że jeśli wskaźnik w / c < 0,4 nastąpiło zmniejszenie porowatości kapilarnej zaczynu cementowego, a tym samym zwiększenie trwałości betonu dzięki poprawie parametrów wytrzymałościowych w strefie styku ziaren kruszywa gruboziarnistego z zaczynem cementowym. Badania wykazały również istotny wpływ prawidłowego utwardzenia na właściwości mechaniczne i trwałość betonu nawierzchniowego.
Rocznik
Strony
461--481
Opis fizyczny
Bibliogr. 54 poz., il., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] W. Jackiewicz-Rek, T. Drzymała, A. Kuś, M. Tomaszewski, “Durability of High Performance Concrete (HPC) Subject to Fire Temperature Impact”, Archives of Civil Engineering, 2016, vol. 62, no. 4, pp. 73-93, DOI: 10.1515/ace-2015-0109.
  • [2] K. Konieczna, K. Chilmon, W. Jackiewicz-Rek, “Investigation of mechanical properties, durability and microstructure of low-clinker high-performance concretes incorporating ground granulated blast furnace slag, siliceous fly ash and silica fume”, Applied Sciences, 2021, vol. 11, no. 2, pp. 1-18, DOI: 10.3390/app11020830.
  • [3] D.H. Butler, “Durability of concrete”, in Construction Materials Their nature and behaviour, 4th ed., P. Domone, J. Illston, Eds. CRC Press, 2010, pp. 175-195, DOI: 10.4324/9780203927571.
  • [4] D. Tompkins, L. Khazanovich, M.I. Darter, W. Fleischer, “Design and construction of sustainable pavements: Austrian and German two-layer concrete pavements”, Transportation Research Record, 2009, vol. 2098, pp. 75-85, DOI: 10.3141/2098-08.
  • [5] W. Jackiewicz-Rek, J. Kuziak, B. Jaworska, “Analysis of the Properties of Expansive Concrete with Portland and Blast Furnace Cement”, Archives of Civil Engineering, 2018, vol. 64, no. 4, pp. 175-196, DOI: 10.2478/ace-2018-0051.
  • [6] P. Radziszewski, W. Jackiewicz-Rek, M. Sarnowski, M. Urbański, “Fortification of Damaged Asphalt Pavements with Cement Concrete Slabs Reinforced with Next-Gen Bars - Part I: Laboratory Study”, Archives of Civil Engineering, 2018, vol. 64, no. 3, pp. 67-80, DOI: 10.2478/ace-2018-0030.
  • [7] F. de Larrard, T. Sedran, “High and ultra-High performance concrete in pavement: tools for the road eternity,” in 9th International Symposium on High Performance Concrete: Design, Verification and Utilization, August 2011. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00877025/document.
  • [8] A. Akkari, B. Izevbekhai, “Composite Pavements and Exposed Aggregate Texturing at MnROAD: Cells 70, 71 and 72 Construction Report and Early Performance Evaluation”, Minnesota Dep. Transp., no. October, 2012. [Online]. Available: https://dot.state.mn.us/mnroad/construction/PDF’s/Composite Construction Report Final (draft mar11).pdf.
  • [9] T. Sedran, “Finely graded surface concrete (FGSC): A sustainable solution for exposed-aggregate concrete”, in PIARC International Seminar, May 2011.
  • [10] P.T. Committee, Quiet Pavement Technologies, 2013R10EN- Technical report. PIARC, 2013.
  • [11] R.S. Ravindrarajah, C.T. Tam, “Properties of concrete made with crushed concrete as coarse aggregate”, Magazine of Concrete Research, 1985, vol. 37, no. 130, pp. 29-38.
  • [12] P. Gierasimiuk, M. Wasilewska, W. Gardziejczyk, “A comparative study on skid resistance of concrete pavements differing in texturing technique”, Materials, 2021, vol. 14, no. 1, pp. 1-21, DOI: 10.3390/ma14010178.
  • [13] S. Kox, G. Vanroelen, J. Van Herck, H. de Krem, B. Vandoren, “Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction”, Case Studies in Construction Materials, 2019, vol. 11, DOI: 10.1016/j.cscm.2019.e00282.
  • [14] M. Linek, P. Nita, W. Zebrowski, P. Wolka, “Assessment of Granite, Quartz and Syenite Aggregate Suitability Intended for the Application in Case of Transport Pavement Concrete”, IOP Conference Series Materials Science and Engineering, 2019, vol. 471, no. 3, DOI: 10.1088/1757-899X/471/3/032076.
  • [15] M. Kurpinska, B. Grzyl, M. Pszczola, A. Kristowski, “The application of granulated expanded glass aggregate with cement grout as an alternative solution for sub-grade and frost-protection sub-base layer in road construction”, Materials, 2019, vol. 12, no. 21, DOI: 10.3390/ma12213528.
  • [16] M.R. Hainin, P.J. Ramadhansyah, T.H. Chan, A.H. Norhidayah, F.M. Nazri, Ichwana, “Strength and properties of concrete pavement incorporating multiple blended binders”, Materials Science Forum, 2017, vol. 889, pp. 265-269, DOI: 10.4028/www.scientific.net/MSF.889.265.
  • [17] S. Jayakody, C. Gallage, A. Kumar, “Assessment of recycled concrete aggregates as a pavement material”, Geomechanics and Engineering, 2014, vol. 6, no. 3, pp. 235-248, DOI: 10.12989/gae.2014.6.3.235.
  • [18] P. Taylor, L. Sutter, J. Weiss, Investigation of Deterioration of Joints in Concrete Pavements. National Concrete Pavement Technology Center, Iowa State University, 2012.
  • [19] EN 206:2013+A1:2016 Concrete. Requirements, properties, manufacturing compatibility.
  • [20] EN 197-1:2011 Cement. Composition, specifications and conformity criteria for common cements.
  • [21] T. Rudnicki, R. Jurczak, “Recycling of a concrete pavement after over 80 years in service”, Materials, 2020, vol. 13, no. 10, pp. 1-17, DOI: 10.3390/ma13102262.
  • [22] A. Sounthararajah, N. Nguyen, H.H. Bui, P. Jitsangiam, G.L.M. Leung, J. Kodikara, “Effect of cement on the engineering properties of pavement materials”, Materials Science Forum, 2016, vol. 866, pp. 31-36, DOI: 10.4028/www.scientific.net/MSF.866.31.
  • [23] Z. Giergiczny, M.A. Glinicki, M. Sokołowski, M. Zielinski, “Air void system and frost-salt scaling of concrete containing slag-blended cement”, Construction and Building Materials, 2009, vol. 23, no. 6, pp. 2451-2456, DOI: 10.1016/j.conbuildmat.2008.10.001.
  • [24] K. Hrapović, “Construction design of the joints in the concrete”, European Journal of Engineering and Technology, 2020, vol. 8, no. 2, pp. 62-75.
  • [25] Y. Sun, Y. Cheng, M. Ding, X. Yuan, J. Wang, “Research on properties of high-performance cement mortar for semiflexible pavement”, Advances in Materials Science and Engineering, 2018, vol. 2018, DOI: 10.1155/2018/4613074.
  • [26] C. Karakurt, A.T. Arslan, “Properties of Concrete Pavements Produced With Different Type of Fibers”, Karakurt and Arslan. JOTSCB, vol. 1, pp. 17-24, 2017.
  • [27] J. H. Jeong and D. G. Zollinger, “Development of Test Methodology and Model for Evaluation of Curing Effectiveness in Concrete Pavement Construction”, Transp. Res. Rec., no. 1861, pp. 17-25, 2003, DOI: 10.3141/1861-03.
  • [28] P. Szymański, M. Pikos, P. Nowotarski, “Concrete road surface with the use of cement concrete-selected results”, Procedia Engineering, 2017, vol. 208, pp. 166-173, DOI: 10.1016/j.proeng.2017.11.035.
  • [29] M. Glinicki, Inżynieria nawierzchni drogowych. Warszawa: Wydawnictwo Naukowe PWN, 2019. ISBN 978-83-01-20517-1.
  • [30] S.H. Hlail, S. Al-Busaltan, A.M. Shaban, “Sustainable Development of Highly Flowable Cementitious Grouts for Semi-flexible Pavement Mixture”, IOP Conference Series: Materials Science and Engineering, 2020, vol. 928, no. 2, DOI: 10.1088/1757-899X/928/2/022068.
  • [31] J. Roesler, J. Huntley, A. Amirkhanian, “Performance of continuously reinforced concrete pavement containing recycled concrete aggregates”, Journal of the Transportation Research Board, 2011, vol. 2253, no. 1, pp. 32-39, DOI: 10.3141/2253-04.
  • [32] K. Apichit, J. Peerapong, A. Anukun, S. Pattarapong, “Compaction and strength characteristics of recycled pavement material: Cement mixtures used for road pavement purposes”, Scientific Research and Essays, 2019, vol. 14, no. 3, pp. 15-23, DOI: 10.5897/sre2018.6583.
  • [33] Z. Giergiczny, P. Boos, “Testing the frost resistance of concrete with different cement types - experience from laboratory and practice”, Journal Architecture Civil Engineering Environment, 2010, vol. 3, no. 2, pp. 41-51.
  • [34] X. Cai, W. Huang, K. Wu, “Study of the self-healing performance of semi-flexible pavement materials grouted with engineered cementitious composites mortar based on a non-standard test”, Materials, 2019, vol. 12, no. 21, DOI: 10.3390/ma12213488.
  • [35] B.B. Raggiotti, M.J. Positieri, Á. Oshiro, “Natural zeolite, a pozzolan for structural concrete”, Procedia Structural Integrity, 2018, vol. 11, pp. 36-43, DOI: 10.1016/j.prostr.2018.11.006.
  • [36] K. Kaboosi, F. Kaboosi, M. Fadavi, “Investigation of greywater and zeolite usage in different cement contents on concrete compressive strength and their interactions”, Ain Shams Engineering Journal, 2020, vol. 11, no. 1, pp. 201-211, DOI: 10.1016/j.asej.2019.08.008.
  • [37] A. Joshaghani, “The effects of zeolite as supplementary cement material on pervious concrete”, in Proceedings of the International Concrete Sustainability Conference, Washington, DC. 2016.
  • [38] M. Rucka, E. Wojtczak, M. Knak, M. Kurpińska, “Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation”, Construction and Building Materials, 2021, vol. 280, pp. 1-16, DOI: 10.1016/j.conbuildmat.2021.122522.
  • [39] A. Mariak, M. Kurpińska, “The effect of macro polymer fibres length and content on the fibre reinforced concrete”, MATEC Web Conferences, 2018, vol. 219, pp. 1-8, DOI: 10.1051/matecconf/201821903004.
  • [40] H. Bolat, O. Şimşek, M. Çullu, G. Durmuş, Ö. Can, “The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete”, Composites Part B: Engineering, 2014, vol. 61, pp. 191-198, DOI: 10.1016/j.compositesb.2014.01.043.
  • [41] L. Malgorzata, “Modified pavement quality concrete as material alternative to concrete applied regularly on airfield pavements”, IOP Conference Series: Materials Science and Engineering, 2019, vol. 603, no. 3, DOI: 10.1088/1757-899X/603/3/032043.
  • [42] M. Wasilewska, W. Gardziejczyk, P. Gierasimiuk, “Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement”, IOP Conference Series: Materials Science and Engineering, 2018, vol. 356, no. 1, DOI: 10.1088/1757-899X/356/1/012001.
  • [43] The Effects of Higher Strength and Associated Concrete Properties on Pavement Performance. U.S. Department of Transportation Federal Highway Administration, 2001. [Online]. Available: https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/00161.pdf.
  • [44] E.Y. Manyo, et al., “Approach of Pavement Surface Layer Degradation Caused by Tire Contact Using Semi-Analytical Model”, Materials, 2021, vol. 14, no. 9, pp. 1-14.
  • [45] L. Zheng, R.M. Jones, L. Yang, A. Hakki, D.E. MacPhee, “Exposed-aggregate areas and photocatalytic efficiency of photocatalytic aggregate mortar”, Magazine of Concrete Research, 2020, vol. 72, no. 16, pp. 852-863, DOI: 10.1680/jmacr.18.00441.
  • [46] EN 12350-3:2019 Testing fresh concrete. VeBe test.
  • [47] EN 12350-6:2019 Testing fresh concrete. Density.
  • [48] EN 12350-1:2019 Testing fresh concrete. Sampling and common apparatus.
  • [49] EN 12390-3:2019 Testing hardened concrete. Compressive strength of test specimens.
  • [50] EN 12390-6:2009 Testing hardened concrete. Tensile splitting strength of test specimens.
  • [51] EN 14889-2:2006 Fibres for concrete. Polymer fibres. Definitions, specifications and conformity.
  • [52] ASTM C457 Microscopical Determination of the Air-Void System in Hardened Concrete.
  • [53] EN 13877-2:2013 Concrete pavements. Functional requirements for concrete pavements.
  • [54] PKN-CEN/TS 12390-9:2017-07 Testing hardened concrete - Part 9: Freeze-thaw resistance with de-icing salts - Scaling.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38540443-0d8f-4d50-ae59-acd6c3c0a707
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.