Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Iron-modified pumice (Fe-P) was prepared by the ion-exchange method using natural pumice from Kayseri, Turkey at room temperature without calcination. SEM, FTIR, XRD, and S-BET measurement were used to investigate the copper removal mechanism. The results show that the SBET of the pumice increased from 11.88 m2/g to 21.01 m2/g after iron modification. The effects of pH, contact time, initial copper concentration, temperature, and various cations (Na+, K+, Ca2+, Mg2+ and Al3+) at various pH were investigated in batch experiments. More than 92% of Cu(II) was removed after 180 min. Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models were applied to the equilibrium data at 298, 308 and 318 K. The maximum adsorption capacity at 298, 308 and 318 K was found to be 21.52, 19.48, and 19.67 mg/g, respectively. The kinetics of copper on Fe-P was best described by the pseudo-second order kinetic model. The negative values of free energy change and enthalpy change indicated that the adsorption process was feasible, spontaneous and exothermic.
Czasopismo
Rocznik
Tom
Strony
165--180
Opis fizyczny
Bibliogr. 32 poz., tab., rys.
Twórcy
autor
- Cumhuriyet University, Environmental Engineering Department of Engineering Faculty, Sivas, Turkey, 58140
autor
- Cumhuriyet University, Environmental Engineering Department of Engineering Faculty, Sivas, Turkey, 58140
Bibliografia
- [1] AGUADO J., ARSUAGA J.M., ARENCIBIA A., LINDO M., GASCON V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 2009, 163, 213.
- [2] RAO M.M., RAMESH A., RAO G.P.C., SESHAIAH K., Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater., 2006, 129, 123.
- [3] MILICEVIC S., BOLJANAC T., MARTINOVIC S., VLAHOVIC M., MILOSEVIC V., BABIC B., Removal of copper from aqueous solutions by low cost adsorbent – Kolubara lignite, Fuel Proc. Techn., 2012, 95 (1), 7.
- [4] AL-RASHDI B., TIZAOUI C., HILAL N., Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent, Chem. Eng. J., 2012, 183, 294.
- [5] PAPANDREOU A., STOURNARS C.J., PANIAS D., Copper and cadmium adsorption on pellets made from fired coal fly ash, J. Hazard. Mater., 2007, 148, 538.
- [6] PENTARI D., PERDIKATSIS V., KATSHIMICHA D., KANAKI A., Sorption properties of low calorific value Greek lignites. Removal of lead, cadmium, zinc and copper ions from aqueous solutions, J. Hazard. Mater., 2009, 168, 1017.
- [7] KILIC M., YAZICI H., SOLAK M., A comprehensive study on removal and recovery of copper(II) from aqueous solutions by NaOH-pretreated Marrubium globosum ssp., globosum leaves powder. Potential for utilizing the copper(II) condensed desorption solutions in agricultural applications, Bioresour. Technol., 2009, 100, 2130.
- [8] XIA L., HU Y.X., ZHANG B.H., Kinetics and equilibrium adsorption of copper(II) and nickel(II) ions from aqueous solution using sawdust xanthate modified with ethanediamine, Trans. Nonferrous Met. Soc. China, 2014, 24, 868.
- [9] WAN NGAH W.S., HANAFIAH M.A.K.M., Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents. A review, Bioresour. Technol., 2008, 99 (10), 3935.
- [10] ZHANG X., LIN S., CHEN Z., MEGHARAJ M., NAIDU R., Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution. Reactivity, characterization and mechanism, Water Res., 2011, 45, 3481.
- [11] GULER U.A., SARIOGLU M., Removal of tetracycline from wastewater using pumice stone. Equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng., 2014, 12 (79), 1.
- [12] KITIS M., KAPLAN S., KARAKAYA E., YIGIT O., CIVELEKOGLU G., Adsorption of natural organic matter from waters by iron coated pumice, Chemosphere, 2007, 66, 130.
- [13] KANG J., LIU H., ZHENG Y.M., QUA J., CHEN J.P., Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan, J. Coll. Int. Sci., 2010, 344, 117.
- [14] THEVANNAN A., MUNGROO R., HUİ NİU C., Biosorption of nickel with barley straw, Biores. Techn., 2010, 101, 1776.
- [15] LAGERGREN S., About the theory of so-called adsorption of soluble substances, Kung. Sven. Veten. Hand., 1898, 1.
- [16] HO Y.S., MCKAY G., Pseudo-second order model for sorption processes, Proc. Biochem., 1999, 34, 451.
- [17] MURUGESAN A., RAVIKUMAR L., SATHYA SELVA BALA V., SENTHIL KUMAR P., VIDHYADEVI T., DINESH KIRUPHA S., KALAIVANI S.S., KRITHIGA S., SIVANESAN S., Removal of Pb(II), Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides. Equilibrium and kinetic approach, Desalination, 2011, 271, 199.
- [18] KHATAEE A.R., VAFAEI F., JANNATKHAH M., Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp. Kinetic, isotherm and thermodynamic studies, Int. Biodet. Biodeg., 2013, 83, 33.
- [19] HAN R., ZHANG J., ZOU W., SHI J., LIU H., Equilibrium biosorption isotherm for lead ion on chaff, J. Hazard Mater., 2005, 125, 266.
- [20] CHEN Z., WANG T., JIN X., CHEN Z., MEGHARAJ M., NAIDU R., Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution, J. Coll. Int. Sci., 2013, 398, 59.
- [21] CHEN H., LUOA H., LANA Y., DONG T., HU B., WANG Y., Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron, J. Hazard. Mater., 2011, 192, 44.
- [22] FANG Z., CHEN J., QIU X., QIU X., CHENG W., ZHU L., Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination, 2011, 268, 60.
- [23] SEPEHR M.N., SIVASANKAR V., ZARRABI M., SENTHIL KUMAR M., Surface modification of pumice enhancing its fluoride adsorption capacity. An insight into kinetic and thermodynamic studies, Chem. Eng. J., 2013, 228, 192.
- [24] ZHAO Y., GU X., GAO S., GENG J., WANG X., Adsorption of tetracycline (TC) onto montmorillonite. Cations and humic acid effects, Geoderma, 2012, 183–184, 12.
- [25] HOU M.F., MAC C.X., ZHANG W.D., TANG X.Y., FAN Y.N., WAN H.F., Removal of Rhodamine B using ironpillared bentonite, J. Hazard. Mater., 2011, 186, 1118.
- [26] ERSOY B., SARIISIK A., DIKMEN S., SARIISIK G., Characterization of acidic pumice and determination of its electrokinetic properties in water, Powder Techn., 2010, 197, 129.
- [27] KAPLAN BEKAROĞLU S.S., Removal of natural organic matter using various surface-modified adsorbents, Süleyman Demirel University Graduate School of Applied and Natural Sciences, Department of Environmental Engineering, 2010, 284.
- [28] CHANG Y., LI C.W., BENJAMIN M.M., Iron oxide-coated media for NOM sorption and particulate filtration, J. Amer. Water Works Assoc., 1997, 89, 100.
- [29] SMICIKLAS I., DIMOVIC S., PLECAS I., MITRIC M., Removal of Co2+ from aqueous solutions by hydroxyapatite, Water Res., 2006, 40, 2267.
- [30] KHALAF M.A., Biosorption of reactive dye from textile wastewater by nonviable biomass of Aspergillus niger and Spirogyra sp., Biores. Techn., 2008, 99, 6631.
- [31] ZHAO Y., GENG J., WANG X., GU X., GAO S., Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances, J. Coll. Int. Sci., 2011, 361, 247.
- [32] ZOLGHARNEIN J., BAGTASH M., SHARIATMANESH T., Simultaneous removal of binary mixture of Brillant Green and Crystal Violet using derivative spectrophometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina, Spectrochim. Acta Part A., Mol. Biomol. Spectry, 2015, 137, 1016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384e9b01-ac8d-4a7a-85ce-effbc6128ac2