PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Application of Orifice Hydrodynamic Cavitation Reactor for Tertiary Treatment of Wastewater Treatment Plant Effluents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a multi-orifice hydrodynamic cavitator (HC) has been applied as an effective device for water reclamation. Municipal wastewater after mechanical and biological treatment has been applied as a medium. The effectiveness of using this device has been evaluated on the basis on the microbiological indicators. Moreover, optimization of operating parameters was evaluated. Two experiments with different inlet pressure of 0.4 and 0.6 MPa were performed. The samples for analyses were taken at the following time intervals: 0, 15, 30, 60 and 90 min. The application of HC reactor provided the effective destruction of microorganisms, thus allowing for subsequent use of reclaimed water. With regard to Escherichia coli and Coliform bacteria destruction, the longest time of 90 min and higher pressure of 0.6 MPa might be considered as the most advantageous conditions to perform cavitation. In both cases, the microbes were deactivated in over 50%. In the case of Enterococci, Pseudomonas aeruginosa and colony count, more beneficial results were found at lower pressure of 0.4 MPa and 90 min. Therein, the high level of microorganisms destruction was achieved varied between 81 and 92%. The applied HC allowed for selecting optimal operating parameters and process control through the application of gauge system.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, ul. Nadbystrzycka 40 B, Poland
Bibliografia
  • 1.Egerer S., Puente A.F., Peichl M., Rakovec O., Sa¬maniego L., Schneider U.A. Limited Potential of Ir¬rigation to Prevent Potato Yield Losses in Germany Under Climatechange. Agricultural Systems 2023; 207: 103633.
  • 2.Ou Z., He F., Zhu Y., Lu P., Wang L. Analysis of driving factors of water demand based on explain¬able artificial intelligence. Journal of Hydrology: Regional Studies 2023; 47: 101396.
  • 3.Ionita M., Nagavciuc V., Scholz P., Dima M.O. Long-term drought intensification over Europe driven by the weakening trend of the Atlantic Me¬ridional Overturning Circulation. Journal of Hydrol¬ogy: Regional Studies 2022; 42: 101176.
  • 4.Mpaizão A., Gomes Luiz E., Brandão L., Sampaio I., Moura I., Gonçalves R;. Oliveira, J., Cassini S. Microalgae as tertiary wastewater treatment: Energy production, carbon neutrality, and high-value prod¬ucts. Algal Research 2023; 72: 103113.
  • 5.Metcalf and Eddy Inc. Wastewater engineering: Treatment and reuse. 4th ed. New York: McGraw- Hill; 2003.
  • 6.Vergine P., Amalfitano S., Salerno C., Berardi G., Pollice A. Reuse of ultrafiltered effluents for crop ir¬rigation: On-site flow cytometry unveiled microbial removal patterns across a full-scale tertiary treat¬ment. Science of the total environment 2020; 718: 137298.
  • 7.Andalib M., Nakhla G., Zhu J. Dynamic testing of the twin circulating fluidized bed bioreactor (TCFBBR) for nutrient removal from municipal wastewater. Chemical Engineering Journal 2010; 162(2): 616–625.
  • 8.Safari G.H., Yetilmezsoy K., Mahvi A.H., Zar¬rabi M. Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system. Journal of Environmental Health Science and Engineering 2013; 11(10): 1–9.
  • 9.Nelson M., Nakhla G., Zhu J. Fluidized-Bed Biore¬actor Applications for Biological Wastewater Treat¬ment: A Review of Research and Developments. Engineering 2017; 3: 330-342.
  • 10.Amadu A.A., Abbew A.-W., Qiu S., Addico G., Hodgson I., Duodu S., Appiah S., Ge S. Advanced treatment of food processing effluent by indigenous microalgae-bacteria consortia: Population dynam¬ics and enhanced nitrogen uptake. Algal Res. 2023; 69: 102913.
  • 11.Qurie M., Daghra S., Khamis M.I., Kanan A., Mpaghouthi Z., Alimari A., Karaman R. Applica¬tion of the epuvalisation technology for the tertiary treatment of secondary treated effluents using gera¬nium plants. Annals of Agricultural Sciences 2019; 64: 237-243.
  • 12.Üstün G.E., Solmaz S.K., Çiner F., Başkaya H.S. Tertiary treatment of a secondary effluent by the cou¬pling of coagulation-flocculation-disinfection for irrigation reuse. Desalination 2011; 277: 207-212.
  • 13.Christou A., Agüera A., Bayona J. M., Cytryn E., Fotopoulos V., Lambropoulou D., Manaia C. M., Michael C., Revitt M., Schröder P., Fatta-Kassinos D. The potential implications of reclaimed waste¬water reuse for irrigation on the agricultural envi¬ronment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. Water research 2017; 123: 448–467.
  • 14.Fico G.C., de Azevedo A.R.G., Marvila M.T. Water reuse in industries: analysis of opportunities in the Paraíba do Sul river basin, a case study in Presidente Vargas Plant, Brazil. Environ Sci Pollut Res 2022; 29: 66085–66099.
  • 15.Hernández-Chover V., Castellet-Viciano L., Hernández-Sancho F. A Tariff Model for reclaimed Water in Industrial Sectors: An Opportunity from the Circular Economy. Water 2022;14: 3912.
  • 16.Ren X., Zhang S., Miao, H. Biological stability of reclaimed greywater reused for flushing household toilets. Journal of Cleaner Production 2023; 387: 135863.
  • 17.Vojtěchovská Šrámková M., Diaz-Sosa V., Wanner J. Experimental verification of tertiary treatment process in achieving effluent quality required by wastewater reuse standards. Journal of Water Pro¬cess Engineering 2018; 22: 41–45.
  • 18.Wang B., Su H., Zhang B. Hydrodynamic cavitation as a promising route for wastewater treatment – A review. Chemical Engineering Journal 2021; 412, 128685.
  • 19.Kumari,P., Kumar A. Advanced oxidation pro¬cess: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces 2023; 11: 100122.
  • 20. Saravanan A., Deivayanai V.C., Kumar P.S., Ran¬gasamy G., Hemavathy R.V., Harshana T., Gayathri N., Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mech¬anism, challenges and future outlook. Chemosphere 2022; 308(3): 136524.
  • 21. Darandale G.R., Jadhav M.V., Warade A.R., Vikas S. H. Hydrodynamic cavitation a novel approach in wastewater treatment: A review. Materials Today: Proceedings 2023; 77(3): 960-968.
  • 22. Mohod A., Teixeira A., Bagal M., Gogate, P., Giudi¬ci R. Degradation of Organic Pollutants from Waste¬water using Hydrodynamic Cavitation: A review. Journal of Environmental Chemical Engineering 2023; 11: 109773.
  • 23. Szulżyk-Cieplak J, Ozonek J. Studies of the degra¬dation process of phenanthrene in a cavitated liquid environment. Chemik. 2013; 67(10):1003-1010.
  • 24. Mancuso G., Langone M., Andreottola G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications. Journal of en¬vironmental health science & engineering 2020; 18(1): 311–333.
  • 25. Gogate P.R., Pandit A.B. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 2004; 8 (3-4): 501–551.
  • 26. Patil Y., Sonawane S., Shyam P., Sun X., Manickam S. Hybrid hydrodynamic cavitation (HC) technique for the treatment and disinfection of lake water. Ul¬trasonics sonochemistry 2023; 97: 106454.
  • 27. Szala M., Hejwowski T., Lenart I. Cavitation ero¬sion resistance of ni-co based coatings. Advances in Science and Technology Research Journal. 2014;8(21):36-42.
  • 28. Szala M., Walczak M., Hejwowski T. Factors Influ¬encing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron. Advances in Science and Technol¬ogy Research Journal.2021; 15(4): 376-386.
  • 29. Krella AK. Degradation and Protection of Materi¬als from Cavitation Erosion: A Review. Materials. 2023; 16(5):2058.
  • 30. Agarkoti C., Thanekar P.D., Gogate P.R. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, oper¬ating conditions and application to real effluents. Jour¬nal of environmental management 2021; 300: 113786.
  • 31. Mishra B., Mukherjee A., Mullick A., Bhandari V.M., Moulik S. Design of hydrodynamic cavita¬tion assisted intensified tertiary treatment unit for effective degradation of organic micropollutants in pharmaceutical industrial effluent: A Case study with triclosan. Journal of Water Process Engineering 2022; 49: 103132.
  • 32. Prajapat A.L., Gogate P.R. Intensification of depoly¬merization of aqueous guar gum using hydrodynam¬ic cavitation. Chemical Engineering and Processing 2015; 93: 1-9.
  • 33. Mevada J., Devi S., Pandit A.B. Large scale micro¬bial cell disruption using hydrodynamic cavitation: Energy saving options. Biochemical Engineering Journal 2019; 143: 151-160.
  • 34. Yadav M., Sharma J., Yadav R.K., Gole V. L. Mi¬crobial disinfection of water using hydrodynamic cavitational reactors. Journal of Water Process En¬gineering 2021; 41: 102097.
  • 35. Bis M., Montusiewicz A., Ozonek J., Pasieczna- Patkowska S. Application of hydrodynamic cavi¬tation to improve the biodegradability of mature landfill leachate. Ultrasonics sonochemistry 2015; 26: 378–387.
  • 36. Świetlicki A., Szala M., Walczak M. Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—A Short Re¬view. Materials 2022; 15: 2476.
  • 37. Verhaagen B., Fernández Rivas D. Measuring cavi¬tation and its cleaning effect. Ultrasonics sonochem¬istry 2016; 29: 619–628.
  • 38. Lebiocka M. Application of Hydrodynamic Cavita¬tion to Improve the Biodegradability of Municipal Wastewater. Journal of Ecological Engineering. 2020;21(6):155-160.
  • 39. Regulation of the Minister of Health of December 7, 2017 on the quality of water intended for human consumption (Dz. U. 2017 poz. 2294).
  • 40. Directive (EU) 2020/2184 Of The European Parlia¬ment and of the Council of 16 December 2020 on the quality of water intended for human consumption
  • 41. Ishii S., Sadowsky M. J. Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes and environments 2008; 23(2): 101–108.
  • 42. Khan F.M., Gupta R. Escherichia coli (E. coli) as an Indicator of Fecal Contamination in Groundwater: A Review. In: Jeon, HY. Sustainable Development of Water and Environment. ICSDWE 2020. Environ¬mental Science and Engineering. Springer, Cham.
  • 43. Curuțiu C., Iordache F., Gurban P., Lazǎr V., Chifiri¬uc M.C. Main Microbiological Pollutants of Bottled Waters and Beverages. Bottled and Packaged Water 2019; 4: 403-422.
  • 44. Sun X., Xuan X., Ji L., Chen S., Liu J., Zhao S., Park S., Yoon J.Y., Om, A.S. A novel continuous hydro¬dynamic cavitation technology for the inactivation of pathogens in milk. Ultrasonics sonochemistry 2021; 71: 105382.
  • 45.Pegu, K., More, P.R., & Arya, S.S. (2023). Applica¬tion of different orifices for hydrodynamic cavita¬tional effects on deactivation of Escherichia coli and Staphylococcus aureus in milk. Food and Bioprod¬ucts Processing 2023; 141: 49-59.
  • 46.Sun X., Wang Z., Xuan X., Ji L., Li X., Tao Y., Boc¬zkaj G., Zhao S., Yoon J.Y., Chen, S. Disinfection characteristics of an advanced rotational hydrody¬namic cavitation reactor in pilot scale. Ultrasonics sonochemistry 2021; 73: 105543.
  • 47.Mezule L., Tsyfansky S., Yakushevich V., Juhna T. A simple technique for water disinfection with hy¬drodynamic cavitation: Effect on survival of Esch¬erichia coli, Desalination 2010; 251: 152–159.
  • 48.Dalfré Filho J.G., Assis M.P., Genovez A.I.B. Bac¬terial inactivation in artificially and naturally con¬taminated water using a cavitating jet apparatus. Journal of Hydro-Environment Research 2015; 9(2): 259–267.
  • 49.Sun H.L., Liu C., Zhang J.J., Zhou Y.M., Xu, Y.C. Molecular characterization of vancomycin-resistant enterococci isolated from a hospital in Beijing, China. J Microbiol Immunol Infect 2019; 52(3): 433–442.
  • 50.Wang X., Wang J., Liu S.Y., Guo J.S., Fang F., Chen Y.P., Yan, P. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water sys¬tems: Nitrogen deficiency and bacterial competition. Journal of hazardous materials 2023; 448: 130941.
  • 51.Loraine G., Chahine G., Hsiao C.T., Choi J.K., Aley P. Disinfection of gram-negative and gram-positive bacteria using DynaJets® hydrodynamic cavitating jets. Ultrasonics sonochemistry 2012; 19(3): 710–717.
  • 52.Arrojo S., Benito, Y., Martínez Tarifa, A.,. A para¬metrical study of disinfection with hydrodynamic cavitation. Ultrasonics sonochemistry 2008; 15: 903–908.
  • 53.Burzio E., Bersani F., Caridi G.C.A., Vesipa R., Ridolfi L., Manes C. Water disinfection by orifice-induced hydrodynamic cavitation. Ultrasonics so¬nochemistry 2020; 60, 10474.
  • 54.Pandit A.B, Kumar J.K. Clean water for developing countries, Annu. Rev. Chem. Biomol. Eng. 2015; 6: 217–246
  • 55.Langone M., Ferrentino R., Trombino G., Andreot¬tola G., Cristina E., Ragazzi M. Application of a novel hydrodynamic cavitation system in wastewa¬ter treatment plants. PB Scientific Bulletin, Series D: Mechanical Engineering 2015; 77: 225-234.
  • 56.Gogate P.R. Cavitation: an auxiliary technique in wastewater treatment schemes. Advances in Envi¬ronmental Research 2002; 6: 335-358.
  • 57.Šarc A., Stepišnik-Perdih T., Petkovšek M., Dular M. The issue of cavitation number value in stud¬ies of water treatment by hydrodynamic cavitation. Ultrasonics sonochemistry 2017: 34: 51–59.
  • 58.Flint K. P. The long-term survival of Escherichia coli in river water. The Journal of applied bacteriol¬ogy 1987; 63(3): 261–270.
  • 59.Vettori D, Manes C, Dalmazzo D, Ridolfi L. On Escherichia coli Resistance to Fluid Shear Stress and Its Significance for Water Disinfection. Water 2022; 14(17):2637.
  • 60.Regulation of the Minister of Health of January 17, 2019 on supervision over the quality of water in swimming areas and places occasionally used for bathing (Dz.U. 2019 poz. 255).
  • 61.Regulation (EU) 2020/741 Of The European Parlia¬ment and of the Council of 25 May 2020 on mini¬mum requirements for water reuse.
  • 62.Tao Y, Cai J, Huai X, Liu B. A novel antibiotic waste¬water degradation technique combining cavitating jets impingement with multiple synergetic methods. Ultrasonics sonochemistry 2018; 44: 36-44.
  • 63.Badmus, K.O., Tijani, J.O., Massima, E., Petrik, L., 2018. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in syn¬ergy with advanced oxidation process. Environ. Sci. Pollut. Res. 25 (8), 7299–7314.
  • 64.Trojanowicz M. Removal of persistent organic pol¬lutants (POPs) from waters and wastewaters by the use of ionizing radiation. The Science of the total environment 2020; 718: 134425.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384e837f-0117-4adf-ad87-1e9b56d49700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.