PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The critical role of advanced sustainability assessment tools in enhancing the real-world application of biofuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sustainability has become of paramount importance in the biofuel industry. Accordingly, various ‎sustainability assessment schemes such as emergy analysis, techno-economic analysis, life ‎cycle ‎assessment, energy accounting, and exergy analysis and its extensions (exergoeconomic, ‎exergoenvironmental, and ‎exergoeconoenvironmental analyses) are being employed increasingly for decision-‎making on biofuel production and consumption systems. In this opinion paper, after classifying ‎and describing biofuel generations, the developed sustainability assessment tools are critically ‎explained, and their pros and cons are discussed. Overall, among the various sustainability assessment approaches introduced so far, exergy-based methods appear to be ‎the most promising tools for developing ‎sustainable biofuel systems. This can be attributed to the fact that the exergy ‎concept is deeply ‎rooted in the well-defined principles of thermodynamics.‎
Twórcy
  • Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu 21030 Kuala Nerus, Terengganu, Malaysia
  • Biofuel Research Team (BRTeam), Terengganu, Malaysia
  • Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, and Education Organization (AREEO), Karaj, Iran
  • Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
Bibliografia
  • [1] Watts N, Amann M, Arnell N, Ayeb-Karlsson S, Belesova K, Boykoff M, Byass P, Cai W, Campbell-Lendrum D, Capstick S. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394 (2019), 1836-1878.
  • [2] Hossain MF. Invisible transportation infrastructure technology to mitigate energy and environment. Energy. Sustainability and Society 7 (2017), 1-12.
  • [3] Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews 72 (2017), 445-464.
  • [4] EPA, U.S. Environmental Protection Agency. Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel, (2005). https://www.epa.gov/.
  • [5] Sajjadi B, Aziz A, Raman A, Arandiyan H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews 63 (2016), 62-92.
  • [6] Aghbashlo M, Demirbas A, Biodiesel: hopes and dreads, Biofuel Research Journal 3 (2016), 379.
  • [7] Mitchell D. A note on rising food prices (Policy Research Working Paper 4682), World Bank, Washington, DC. (2008).
  • [8] Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews 72 (2017), 445-464.
  • [9] Yang Y, Tilman D, Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Research Journal 7 (2020), 1143-1148.
  • [10] Havlik P, Schneider UA, Schmid E, Bottcher H, Fritz S, Skalsky R, Aoki K, De Cara S, Kindermann G, Kraxner F, Global land-use implications of first and second generation biofuel targets. Energy Policy 39 (2011), 5690-5702.
  • [11] Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319 (2008), 1238-1240.
  • [12] Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science 319 (2008), 1235-1238.
  • [13] Aghbashlo M, Hosseinpour S, Tabatabaei M, Mojarab Soufiyan M. Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques. Fuel 235 (2019), 100-112.
  • [14] Chisti Y. Constraints to commercialization of algal fuels. Journal of Biotechnology 167 (2013), 201-214.
  • [15] Aghbashlo M, Mandegari M, Tabatabaei M, Farzad S, Mojarab Soufiyan M, Gorgens JF, Soufiyan MM, Gorgens JF, Mojarab Soufiyan M, Gorgens JF. Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy 149 (2018), 623-638.
  • [16] Kim KH, Eudes A, Jeong K, Yoo CG, Kim CS, Ragauskas A. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. Proceedings of the National Academy of Science 116 (2019), 13816-13824.
  • [17] Rosen MA. Environmental sustainability tools in the biofuel industry. Biofuel Research Journal 5 (2018), 751-752.
  • [18] Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami A-S, Ok YS, Lam SS, Tabatabaei M. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels, Energy Conversion and Managment 212 (2020), 112792.
  • [19] Roto 10 CC, Francis C, Ulgiati S. Emergy: A New Approach to Environmental Accounting, Supplement to Chapter 1, in Tow P, Cooper I, Prtridge I, Birch C (Eds.). Rainfed Farming System. Springer (2011), 35-42.
  • [20] Wei Y, Li Y, Liu X, Wu M. Sustainable development and green gross domestic product assessments in megacities based on the emergy analysis method - A case study of Wuhan. Sustainable Development 28 (2020), 294-307.
  • [21] Santagata R, Zucaro A, Viglia S, Ripa M, Tian X, Ulgiati S. Assessing the sustainability of urban eco-systems through Emergy-based circular economy indicators. Ecological Indicators 109 (2020), 105859.
  • [22] Rugani B, Benetto E. Improvements to emergy evaluations by using life cycle assessment. Environmental Science & Technology 46 (2012), 4701-4712.
  • [23] Meneses M, Pasqualino JC, Cespedes-Sanchez R, Castells F. Alternatives for reducing the environmental impact of the main residue from a desalination plant, Journal of Industrial Ecology 14 (2010), 512-527.
  • [24] Ioannidou D, Zerbi S, Habert G. When more is better-Comparative LCA of wall systems with stone. Building and Environment 82 (2014), 628-639.
  • [25] Dufour J, Iribarren D. Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renewable Energy 38 (2012), 155-162.
  • [26] Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H. Biopower and biofertilizer production from organic municipal solid waste: An exergoenvironmental analysis. Renewable Energy 143 (2019), 64-76.
  • [27] Patel CD. Sustainable ecosystems: enabled by supply and demand management, in: International Conference on Distributed Computing Networking, Springer, 2011: pp. 12-28.
  • [28] Rosen MA. Energy efficiency and sustainable development. International Journal of Global Energy Issues 17 (2002), 23-34.
  • [29] Morosuk T, Tsatsaronis G. A new approach to the exergy analysis of absorption refrigeration machines. Energy 33 (2008), 890-907.
  • [30] Aghbashlo M, Rosen MA. Exergoeconoenvironmental analysis as a new concept for developing thermodynamically, economically, and environmentally sound energy conversion systems. Journal of Cleaner Production 187 (2018), 190-204.
  • [31] Tsatsaronis G, Morosuk T. A general exergy-based method for combining a cost analysis with an environmental impact analysis. Part I-theoretical development, in: Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition. IMECE, Boston, Massachusetts, USA, 2008: p. 67219.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384d7396-93a4-46d3-8026-6e554a2e0d10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.