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Abstract

Wireless Cellular Seamless Mobility is the most important feature of a wireless
cellular communication system. Basically cell phones are used for
communication purpose and therefore good cell coverage is needed to make and
receive calls. Usually, continuous service is achieved by supporting handover
from one cell to another. Handover is the process of changing the channel 
associated with the current connection while a call is in progress. It is often
initiated either by crossing a cell boundary or by deterioration in quality of the 
signal in the current channel. Mobile IP, too, has to support redirection of data 
to a new foreign agent after the change of network access. In this case the
additional delay caused by the redirection. The shorter the interruption of the
service is �up to the ideal case of no service interruption. Minimizing the Delay
based on some prior estimation methods in handover is better for quality of
seamless connectivity anytime; anywhere across communication networks. All 
mobile phone system supports the seamless handover between base stations. To
avoid the additional delay and wastage of Electromagnetic Spectrum, Mobile IP 
may use Optimizations such as rerouting of the whole packet in the flow of 
efficiently transmission of data with short interrupted service by Time series 
based Spectrum Estimation Technique. Due to the utilization of seamless 
handover mechanism it reduces the unwanted usage of Spectrum. 
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1 Introduction

The Electromagnetic Spectrum is the range of frequencies of possible elec-
tromagnetic radiation. The Spectrum ranges from 0 Hertz up to 2.4x1023 
Hertz. The exact wavelength limits of the Spectrum are unknown however it 
is widely believed that the short wavelength limit is equal to the Planck 
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Length (1.616x10-35m) and the long wavelength limit is the length of the 
Universe.[1]. The frequencies of electromagnetic radiation can be calculated
by dividing the speed of light by the wavelength of the electromagnetic radia-
tion. Regions of the Electromagnetic Spectrum have been named by scientists 
to provide an easier way to remember and refer to the ranges; however, in 
reality neighbouring types of electromagnetic energy often overlap. The goal
of Spectrum Estimation is to describe the distribution (over frequency) of the
contained in a signal, based on a finite set of data. Estimation of spectrum is 
useful in a variety of applications, including the detection of signals buried in
wideband noise. 

2 Spectrum Estimation

The Spectrum Estimation of a stationary random process xn is mathemati-
cally related to the autocorrelation sequence by the discrete-time Simulation.
In terms of normalized frequency, this is given by

wavelength × frequency = the speed of light 
or 

λ × ƒ = c

In this equation, the Greek letter �lambda� (λ) is used as shorthand for the
wavelength and the fancy �f� (�) is used to represent the frequency; �c� is the
speed of light (186,000 miles per second or 300 million meters per second). 
Since the speed of light is constant, the wavelength and frequency are limited; 
if one is big the other has to be small.[2]. That is why large (high) frequencies 
correspond to small wavelengths and large wavelengths correspond to small 
(low) frequencies.To convert from frequency (f) to wavelength (8) and vice
versa, recall that f = c/8, or 8 = c/f; where c = speed of light. Rules follow: 

Metric:

Wavelength in cm = 30 / frequency in GHz 
For example: at 10 GHz, the wavelength = 30/10 = 3 cm 
Wavelength in ft = 1 / frequency in GHz 
For example: at 10 GHz, the wavelength = 1/10 = 0.1 ft
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This can be written as a function of physical frequency f (e.g., in hertz) by 
using the relation ω = 2πf/fs, where fs is the sampling frequency.

The correlation sequence can be derived from the SE by use of the inverse 
discrete-time Simulation:

The average of the sequence xn over the entire interval is represented by 

The average  of a signal over a particular frequency band [ω1, ω2],
0≤ω1≤ω2≤π, can be found by integrating the SE over that band:

You can see from the above expression that Pxx(ω) represents the content 
of a signal in an infinitesimal frequency band, which is why it is called the 
spectrum Estimation. The units of the SE are  (e.g., watts) per unit of frequen-
cy. In the case of Pxx(ω), this is watts/radian/sample or simply watts/radian. In 
the case of Pxx(f), the units are watts/hertz. Integration of the SE with respect
to frequency yields units of watts, as expected for the average .For real�
valued signals, the SE is symmetric about DC, and thus Pxx(ω) for 0≤ω≤π is
sufficient to completely characterize the SE. However, to obtain the average
over the entire Nyquist interval, it is necessary to introduce the concept of
the one-sided SE.The one-sided SE is given by

The average of a signal over the frequency band, [ω1, ω2] with 0≤ω1≤ω2≤π, 
can be computed using the one-sided SE as 
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3 Spectrum Estimation Method 

The various methods of estimation available are categorized as follows: In
general terms, one way of estimating the SE of a process is to simply find 
the discrete-time series of the samples of the process (usually done on a grid 
with an FFT) and appropriately scale the magnitude squared of the result. This 
estimate is called the timeseries.The time series estimate of the SE of a length-
L signal xL[n] is 

Where Fs is the sampling frequency. In practice, the actual computation of 
Pxx(f) can be performed only at a finite number of frequency points, and 
usually employs an FFT. Most implementations of the time series method
compute the N-point SE estimate at the frequencies.

In some cases, the computation of the time series via an FFT algorithm is 
more efficient if the number of frequencies is a of two. Therefore it is not 
uncommon to pad the input signal with zeros to extend its length to a of two.
As an example of the time series, consider the following 1001-element sig-
nal xn, which consists of two sinusoids plus noise:

fs = 1000;                % Sampling frequency 
t = (0:fs)/fs;            % One second worth of samples 
A = [1 2];               % Sinusoid amplitudes (row vector) 
f = [150;140];            % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); 
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Figure 1. Time and Frequency Domian Estimation samples 

The timeseries estimate of the SE can be computed using timeseries. In
this case, the data vector is multiplied by a Hamming window to produce a 
modified timeseries.[3].

[Pxx,F] = time series(xn,hamming(length(xn)),length(xn),fs); 
plot(F,10*log10(Pxx)) 
xlabel('Hz'); ylabel('dB'); 
title('Modified Timeseries Spectrum Estimation Estimate');

Figure 2. Performance of the Time series

The following sections discuss the performance of the timeseries with re-
gard to the issues of  leakage, resolution, bias, and variance. 

3.1 Spectrum Leakage:

Consider the SE of a finite-length (length L) signal xL[n], as discussed in 
the Timeseries section. It is frequently useful to interpret xL[n] as the result of
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multiplying an infinite signal, x[n], by a finite-length rectangu-
lar window, wR[n]:

Because multiplication in the time domain corresponds to convolution in
the frequency domain, the expected value of the timeseries in the frequency
domain is: 

showing that the expected value of the timeseries is the convolution of the
true SE with the square of the Dirichlet kernel.The effect of the convolution is
best understood for sinusoidal data. Suppose that x[n] is composed of a sum
of M complex sinusoids:

Its  is 

which for a finite-length sequence becomes 

The preceding equation is equal to: 

So in the  of the finite-length signal, the Dirac deltas have been replaced by
terms of the form WR(ω-ωk), which corresponds to the frequency response of 
a rectangular window centered on the frequency ωk.The frequency response of 
a rectangular window has the shape of a sinc signal, as shown below. 
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Figure 3. Variance of the Timeseries Spectrum Leakage. 

The plot displays a main lobe and several side lobes, the largest of which is 
approximately 13.5 dB below the main lobe peak. These lobes account for the 
effect known as spectrum leakage. While the infinite-length signal has its 
concentrated exactly at the discrete frequency points fk, the windowed (or 
truncated) signal has a continuum of �leaked" around the discrete frequency 
points fk.Because the frequency response of a short rectangular window is a
much poorer approximation to the Dirac delta function than that of a longer
window, spectrum leakage is especially evident when data records are short. 
Consider the following sequence of 100 samples: 

fs = 1000;                 % Sampling frequency
t = (0:fs/10)/fs;          % One-tenth second worth of samples 
A = [1 2];                % Sinusoid amplitudes 
f = [150;140];             % Sinusoid frequencies 
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); 
[Pxx,F] = timeseries(xn,rectwin(length(xn)),length(xn),fs); 
plot(F,10*log10(Pxx)) 

It is important to note that the effect of spectrum leakage is contingent
solely on the length of the data record. It is not a consequence of the fact that
the time series is computed at a finite number of frequency samples. 

3.2 Resolution: 

Resolution refers to the ability to discriminate spectrum features, and is a 
key concept on the analysis of spectrum estimator performance.In order to
resolve two sinusoids that are relatively close together in frequency, it is ne-
cessary for the difference between the two frequencies to be greater than the
width of the main lobe of the leaked spectra for either one of these sinusoids. 
The mainlobe width is defined to be the width of the main lobe at the point
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The timeseries is asymptotically unbiased, which is evident from the earli-
er observation that as the data record length tends to infinity, the frequency 
response of the rectangular window more closely approximates the Dirac delta 
function. However, in some cases the timeseries is a poor estimator of the SE 
even when the data record is long. This is due to the variance of the timese-
ries, as explained below. 

3.4 Variance of the Timeseries: 

The variance of the timeseries can be shown to be: 

which indicates that the variance does not tend to zero as the data
length L tends to infinity. In statistical terms, the timeseries is not a consistent
estimator of the SE. Nevertheless, the timeseries can be a useful tool for spec-
trum estimation in situations where the SNR is high, and especially if the data 
record is long. 

4 The Modified Time series: 

The modified time series windows the time-domain signals prior to compu-
ting the DFT in order to smooth the edges of the signal. This has the effect of
reducing the height of the sidelobes or spectrum leakage. This phenomenon 
gives rise to the interpretation of sidelobes as spurious frequencies introduced 
into the signal by the abrupt truncation that occurs when a rectangular window 
is used. For nonrectangular windows, the end points of the truncated signal 
are attenuated smoothly, and hence the spurious frequencies introduced are 
much less severe. On the other hand, nonrectangular windows also broaden 
the mainlobe, which results in a reduction of resolution.[5].

Timeseries allows you to compute a modified timeseries by specifying the 
window to be used on the data.  

For example, compare a default rectangular window and a Hamming win-
dow: 

fs = 1000;                  % Sampling frequency
t = (0:fs/10)./fs;        % One-tenth second worth of samples 
A = [1 2];                % Sinusoid amplitudes 
f = [150;140];           % Sinusoid frequencies 
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); 
[Pxx,F] = timeseries(xn,rectwin(length(xn)),length(xn),fs); 
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plot(F,10*log10(Pxx)) 
[Pxx,F] = timeseries(xn,hamming(length(xn)),length(xn),fs); 
plot(F,10*log10(Pxx)) 

You can verify that although the sidelobes are much less evident in the
Hamming-windowed timeseries, the two main peaks are wider. In fact, the 
3 dB width of the mainlobe corresponding to a Hamming window is approx-
imately twice that of a rectangular window. Hence, for a fixed data length, the
SE resolution attainable with a Hamming window is approximately half that 
attainable with a rectangular window.The competing interests of mainlobe 
width and sidelobe height can be resolved to some extent by using variable 
windows such as the window.Nonrectangular windowing affects the average 
of a signal because some of the time samples are attenuated when multiplied
by the window. To compensate for this, timeseries and p normalize the win-
dow to have an average of unity.This ensures that the measured average is
generally independent of window choice. If the frequency components are not 
well resolved by the SE estimators, the window choice does affect the aver-
age. The modified timeseries estimate of the SE is 

where U is the window normalization constant. 

For large values of L, U tends to become independent of window length. 
The addition of U as a normalization constant ensures that the modified time-
series is asymptotically unbiased.

4.1 Timeseries

An improved estimator of the SE is the one proposed by [8]. The method 
consists of dividing the time series data into (possibly overlapping) segments,
computing a modified timeseries of each segment, and then averaging the SE 
estimates. The result is�s SE estimate. Timeseries is implemented in the tool-
box by or function. The averaging of modified timeservers tends to decrease 
the variance of the estimate relative to a single timeseries estimate of the en-
tire data record. Although overlap between segments introduces redundant
information, this effect is diminished by the use of a nonrectangular window,
which reduces the importance or weight given to the end samples of segments 
(the samples that overlap). 
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Figure 4. Minimum and Maximum Frequency Axis Limit 

Hz per unit time, or:
Time in pass band = RBW 
Span/ST = (RBW)(ST) 
Span Where 
RBW = resolution bandwidth and 
ST = sweep time.
On the other hand, the rise time of a filter  
is inversely proportional to its bandwidth,
and if we include a constant of proportionality, k, then: 
Rise time = k
RBW 
If we make the terms equal and solve for  
sweep time, we have: 
k = (RBW)(ST)  
Span
or ST = k (Span)
RBW2 

Entering the values from our example into  the equation, we get:
2.12H(4 kHz) = �3.01 dB x = �24.1 dB .At an offset of 4 kHz, the 3-kHz digi-
tal filter is down �24.1 dB compared to the analog filter which was only down 
�14.8 dB. Because of its superior selectivity, the digital filter can  resolve 
more closely spaced signals.

The general expression used to calculate  
the maximum mismatch error in dB is: 
Error (dB) = �20 log[1 ± |(ρanalyzer)(ρsource[|(where ρ is the reflection coef-
ficient_ 

However, as mentioned above, the combined use of short data records and
nonrectangular windows results in reduced resolution of the estimator. In 
summary, there is a trade-off between variance reduction and resolution. One 
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can manipulate the parameters in Timeseries to obtain improved estimates
relative to the timeseries, especially when the SNR is low. This is illustrated
in the following example.

Consider an original signal consisting of 1000 samples: 

fs = 1000;             % Sampling frequency 
t = (0:1*fs)./fs;    % 301 samples 
A = [2 8];            % Sinusoid amplitudes (row vector)
f = [150;140];         % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 5*randn(size(t));
[Pxx,F] = timeseries(xn,rectwin(length(xn)),length(xn),fs); 
plot(F,10*log10(Pxx)) 

We can obtain 's spectrum estimate for 3 segments with 50% overlap using 
a Hamming window. 

[Pxx,F] = p(xn,hamming(150),75,150,fs); 
plot(F,10*log10(Pxx)); xlabel('Hz'); ylabel('dB');
title('''s Overlapped Segment Averaging SE Estimate');

In the timeseries above, noise and the leakage make one of the sinusoids
essentially indistinguishable from the artificial peaks. In contrast, although the 
SE produced by Timeseries has wider peaks, you can still distinguish the two 
sinusoids, which stand out from the "noise floor."However, if we try to reduce
the variance further, the loss of resolution causes one of the sinusoids to be 
lost altogether: 

[Pxx,F] = p(xn,rectwin(100),75,512,Fs);
plot(F,10*log10(Pxx)) 

4.2 Bias and Normalization in Timeseries: 

Timeseries yields a biased estimator of the SE. The expected value of the
SE estimate is: 

Where L is the length of the data segments, U is the same normalization 
constant present in the definition of the modified timeseries, and W(f) is the 
Fourier transform of the window function. As is the case for all timeservers,
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estimator is asymptotically unbiased. For a fixed length data record, the bias 
of�s estimate is larger than that of the timeseries because the length of the 
segments is less than the length of the entire data sample. 

The variance of estimator is difficult to compute because it depends on 
both the window used and the amount of overlap between segments. Basical-
ly, the variance is inversely proportional to the number of segments whose
modified timeseriess are being averaged. 

                fs = 1000;                % Sampling frequency 
               t = (0:fs)/fs;            % One second worth of samples 
              A = [1 2];               % Sinusoid amplitudes 
              f = [150;140];       % Sinusoid frequencies
             xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); 
            [Pxx1,F1] = pmtm(xn,4,fs); 
            plot(F1,10*log10(Pxx1))

By lowering the time-bandwidth product, you can increase the resolution 
at the expense of larger variance:

       [Pxx2,F2] = pmtm(xn,1.5,fs);
       plot(F2,10*log10(Pxx2))

This method is more computationally expensive than Timeseries due to the
cost of computing the discrete prolate spheroidal sequences. For long data 
series (10,000 points or more), it is useful to compute the DPSSs once and
save them in a MAT-file. dpsssave,dpssload, dpsSEir, and dpssclear are pro-
vided to keep a database of saved DPSSs in the MAT-file dpss.mat.

Cross-Spectrum Estimation Function
The SE is a special case of the cross spectrum Estimation (CSE) function,

defined between two signals xn and yn as 

As is the case for the correlation and covariance sequences, the tool-
box estimates the SE and CSE because signal lengths are finite. 

To estimate the cross-spectrum Estimation of two equal length sig-
nals x and y using Timeseries, the cSE function forms the timeseries as the
product of the FFT of x and the conjugate of the FFT of y. Unlike the real-
valued SE, the CSE is a complex function.cSE handles the sectioning and 
windowing of x and y in the same way as the p function:
Sxy = cSE(x,y,nwin,noverlap,nfft,fs) 
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4.3 Transfer Function Estimate: 

One application of Timeseries is nonparametric system identification. As-
sume that H is a linear, time invariant system, and x(n) andy(n) are the input 
to and output of H, respectively. Then the   of x(n) is related to the CSE
of x(n) and y(n) by 

An estimate of the transfer function between x(n) and y(n) is 

This method estimates both magnitude and phase information. 
The tfestimate function uses Timeseries to compute the CSE and  , and then
forms their quotient for the transfer function estimate. Use tfestimate the same
way that you use thecSE function.

Filter the signal xn with an FIR filter, then plot the actual magnitude re-
sponse and the estimated response: 
h = ones(1,10)/10;             % Moving-average filter 
yn = filter(h,1,xn);
[HEST,f] = tfestimate(xn,yn,256,128,256,fs); 
H = freqz(h,1,f,fs); 
subplot(2,1,1); plot(f,abs(H));  
title('Actual Transfer Function Magnitude');  
subplot(2,1,2); plot(f,abs(HEST)); 
title('Transfer Function Magnitude Estimate'); 
xlabel('Frequency (Hz)');

Figure 5. Frequency Function Estimation 
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4.4 Coherence Function: 

The magnitude-squared coherence between two signals x(n) and y(n) is 

This quotient is a real number between 0 and 1 that measures the correla-
tion between x(n) and y(n) at the frequency ω. 

The  cohere function takes sequences x and y, computes their  spectra and 
CSE, and returns the quotient of the magnitude squared of the CSE and the 
product of the  spectra. Its options and operation are similar to 
the cSE and tfestimate functions.The coherence function of xn and the filter 
output yn versus frequency is mscohere(xn,yn,256,128,256,fs).

If the input sequence length nfft, window length window, and the number 
of overlapping data points in a window numoverlap, are such 
that mscohere operates on only a single record, the function returns all ones.
This is because the coherence function for linearly dependent data is one.All 
AR methods yield a SE estimate given by 

The different AR methods estimate the parameters slightly differently, 
yielding different SE estimates. The following table provides a summary of
the different AR methods.Method of spectrum estimation computes the AR
parameters by solving the following linear system, which give the equations 
in matrix form:

In practice, the biased estimate of the autocorrelation is used for the un-
known true autocorrelation.The method produces the same results as a maxi-
mum entropy estimator.The use of a biased estimate of the autocorrelation
function ensures that the autocorrelation matrix above is positive definite.
Hence, the matrix is invertible and a solution is guaranteed to exist. Moreover,
the AR parameters thus computed always result in a stable all-pole model.
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The equations can be solved efficiently via Levinson's algorithm, which takes 
advantage of the Hermitian Toeplitz structure of the autocorrelation matrix..

For example, compare the  of a speech signal using Timeseries and the 
AR method: 

load mtlb
[Pxx,F] = p(mtlb,hamming(256),128,1024,Fs);
plot(F,10*log10(Pxx)) 

ORDER = 14; 
[Pxx,F] = p(mtlb,ORDER,1024,fs); 
plot(F,10*log10(Pxx)) 

The smoother than the timeseries because of the simple underlying all-pole
model.The accuracy of the Burg method is lower for high-order models, long
data records, and high signal-to-noise ratios (which can cause line splitting, or
the generation of extraneous peaks in the  estimate). The spectrum Estimation
estimate computed by the Burg method is also susceptible to frequency shifts
(relative to the true frequency) resulting from the initial phase of noisy sinu-
soidal signals. This effect is magnified when analyzing short data sequences.

Compare the  of the speech signal generated method. They are very similar
for large signal lengths: 
load mtlb
ORDER = 14; 
[Pburg,F] = pburg(mtlb(1:512),ORDER,1024,fs); 
plot(F,10*log10(Pburg))
[Pxx,F] = p(mtlb(1:512),ORDER,1024,fs); 
plot(F,10*log10(Pxx)) 

Compare the  of a noisy signal computed using the method and the  me-
thod:

fs = 1000;               % Sampling frequency 
t = (0:fs)/fs;          % One second worth of samples 
A = [1 2];              % Sinusoid amplitudes 
f = [150;140];           % Sinusoid frequencies 
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t)); 
p(xn,hamming(256),128,1024,fs);
pburg(xn,14,1024,fs) 

Note that, as the model order for the Burg method is reduced, a frequency 
shift due to the initial phase of the sinusoids will become apparent.
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5 Covariance and Modified Covariance Methods: 

The covariance method for AR spectrum estimation is based on minimiz-
ing the forward prediction error. The modified covariance method is based on
minimizing the forward and backward prediction errors. They are nearly iden-
tical, even for a short signal length: 

load mtlb
pcov(mtlb(1:64),14,1024,fs)  
pmcov(mtlb(1:64),14,1024,fs) 

Figure 6. Coherence factor for Estimating Frequency

Consider a number of complex sinusoids embedded in white noise. You 
can write the autocorrelation matrix R for this system as the sum of the signal 
autocorrelation matrix (S) and the noise autocorrelation matrix (W):

R = S + W. There is a close relationship between the eigenvectors of the
signal autocorrelation matrix and the signal and noise subspaces. The eigen-
vectors v of S span the same signal subspace as the signal vectors. If the sys-
tem contains M complex sinusoids and the order of the autocorrelation matrix
is p, eigenvectors vM+1 through vp+1 span the noise subspace of the autocorrela-
tion matrix. 

5.1 Frequency Estimator Functions:  

To generate their frequency estimates, methods calculate functions of the 
vectors in the signal and noise subspaces. Techniques choose a function that 
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goes to infinity (denominator goes to zero) at one of the sinusoidal frequen-
cies in the input signal.

The expression e(f)Hvk is equivalent to a Fourier transform (the vector e(f) 
consists of complex exponentials). The EV method weights the summation by
the eigenvalues of the correlation matrix:

As metioned above, in addition to estimating the spectrum itself, an esti-
mate of the confidence interval of the spectrum can be generated using a jack-
knifing procedure.Let us define the following:

Simple sample estimate

This is the parameter estimate averaged from all the samples in the distri-
bution (all the tapered spectra).

leave-one-out measurement 

This defines a group of estimates, where each sample is based on leaving
one measurement (one tapered spectrum) out.Pseudovalues 

The jackknifed esimator is computed as: 

This estimator is known to be distributed about the true parameter theta 
approximately as a Student�s t distribution, with standard error defined as: 
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And degrees of freedom which depend on the number of tapers used
(Kmax-1): 

6 Spectrum calculation

6.1 Spectral analysis using MatLab 

You can calculate a power spectrum for x by using the following set of
commands: 

load x552spec 
x=x552spec;
P=spectrum(x,m,noverlap); 

here m is the length of the FFT you want to use-it must be a power of 2 (e.g.
4096,2048,1024,512,256,128,64,32) overlap is the overlap between the blocks 
of length m-the amount by which adjacent blocks overlap. Since a Hanning 
window is used, the data near the ends of each block are not weighted very
heavily, and it may make sense to have some overlap. You have to take this 
into account in your statistical testing though.So the two design parameters 
you have to work with are m and noverlap. 

specplot(P,1.) will plot the spectrum.To do cross spectral analysis you can 
add a second variable name to the command. 

                                        P=spectrum(x,y,m,noverlap); 

6.2 Seek the Peaks 

First look for the periodicities you expect to see in x. First decide what
confidence level you require. I suggest either 95% or 99%. 

 6.3 Cross-Spectral Analysis 

Now we want to search for relationships between the two time series x
and y. The command to compute the cross spectral analysis is,

                                         P=spectrum(x,y,m,noverlap); 
                                        specplot(P,1.)

you touch the spacebar to run successively through plots of the power 
spectra of x and y, the amplitude of the cross spectrum, the phase between x
and y and the coherence between x and y.You can make a vector of the fre-
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quencies in the folowing way,f=0.5*(0:m2)/m2  (where m2 is m/2, the num-
ber of frequencies resolved).Then you would make a linear plot of the first 
half of the coherency spectrum by typing,

plot(f(1:m4),P(1:m4,5))
where m4=m/4. To plot all resolved frequencies replace m4 with m2 
plot(f(1:m2),P(1:m2,5)) to plot the phase, type 
ph=angle(P(1:m2,4));
plot(f(1:m4),ph(1:m4))
The phase is given in radians. If you want it in degrees, type
ph=ph*180/3.141593
plot(f(1:m4),pd(1:m4))

6.4 Calculation of Spectrum using of Time Series Models: 

Syntax
spectrum(sys)
spectrum(sys,{wmin,wmax}) 
spectrum(sys,w) 
spectrum(sys1,...,sysN,w) 
ps=spectrum(sys,w)
[ps,w]=spectrum(sys)
[ps,w,sdps] = spectrum(sys) 

Description 
spectrum(sys) creates an output power spectrum plot of the identified time

series model sys. The frequency range and number of points are chosen auto-
matically.sys is a time series model, which represents the system:

Where, e(t) is a Gaussian white noise and y(t) is the observed output.  
spectrum plots abs(H'H), scaled by the variance of e(t) and the sample
time.If sys is an input-output model, it represents the system:

Where, u(t) is the measured input, e(t) is a Gaussian white noise and y(t) is 
the observed output.In this case, spectrum plots the spectrum of the distur-
bance component He(t).spectrum(sys,{wmin, wmax}) creates a spectrum plot 
for frequencies ranging from wmin to wmax. spectrum(sys,w) creates a spec-
trum plot using the frequencies specified in the vec-
tor w.spectrum(sys1,...,sysN,w) creates a spectrum plot of several identified 
models on a single plot. 
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%% Time specifications: Fs = 1e4; % samples per second dt = 1/Fs; %
seconds per sample StopTime = 1; % seconds t = (0:dt:StopTime-dt)'; N =
size(t,1);
   %% Sine wave: 
   Fc = 1e3;   % hertz 
   x = sin(2*pi*Fc*t); 
   noisy_x = x + 0.5*randn(size(x));
   y = xcorr(noisy_x,5e3,'biased'); 
   display(size(y));
   subplot(2,1,1); 
   plot(t,x);
   title('Sine signal');
   subplot(2,1,2); 
   plot(t,noisy_x); 
   title('Noisy signal'); 
   %% Fourier Transform: 
   X = fftshift(fft(y));
   %% Frequency specifications: 
   dF = Fs/N;                     % hertz 
   f = -Fs/2:dF:Fs/2;          % hertz 
   display(size(f));
   display(size(X));
   %% Plot the spectrum:
   figure;
   plot(f,abs(X)/N);
   xlabel('Frequency (in hertz)'); 
   title('Autocorrelation spectrum'); 

7 Conclusion 

In urban mobile cellular systems, especially when the cell size becomes
relatively small, the handoff procedure has a significant impact on system
performance. In seamless Mobility handovers there will be no connectivity
break but having some additional delay in service, it Degrades Quality of
Service. Due to the Prior Time series based Estimation methods of  Spectrum.
The failures and maximum utilization  of Spectrum  avoided in seamless Mo-
bility Cellular communication.
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