PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Behaviour of Low Arsenic Copper Anodes at High Current Density in Electrorefining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arsenic is the only beneficial impurity for copper electrorefining through inhibiting anode passivation and the formation of floating slimes. The behaviour of copper anodes with different content of arsenic were studied at high current density (>280 A/m2). It showed that low arsenic anodes (As < 300 ppm) easily generated anode passivation, floating slimes and cathode nodules during the electrorefining proccess. The floating slimes, electrolyte, cathode and anode were observed and analyzed. As result, low arsenic anodes were more likely to be passivated due to their microstructure defects and irregular microstructure. Increasing electrolyte temperature and addition of glycerol were propitious to reduce low arsenic anodes’ passivation. The floating slimes occured when the concentration of As(III) in electrolyte decreased to 1 g/L, and they would be precipitated by polyacrylamide. All measures greatly improved the cathode quality at current density of 300 A/m2.
Twórcy
autor
  • Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China
autor
  • Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China
autor
  • Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China
autor
  • Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China
Bibliografia
  • [1] M.S. Moats, S. Wang, D. Kim, A review of the behavior and deportment of lead, bismuth, antimony and arsenic in copper electrorefining, Chen T T Honoraiy Symposium on Hydrometallurgy, Hectrometalluigy and Materials Characterization, John Wiley & Sons, Inc. (2012).
  • [2] T.F. Krusmark, S.K. Young, J.L. Faro, Impact of anode chemistry on high current density operation at Magma Copper’s electrolytic refinery, Electrorefining and Hydrometallurgy of Copper 3, 189-206 (1995).
  • [3] J. Hait, R.K. Jana, S.K. Sanyal, Processing of copper electrorefining anode slime: a review, Mineral Processing and Extractive Metallurgy 118 (4), 240-252 (2009).
  • [4] T.T. Chen, J.E. Dutrizac, Mineralogical characterization of anode slimes - II. Raw anode slimes from Inco’s copper cliff copper refinery, Canadian Metallurgical Quarterly 27 (2), 97-105 (1988).
  • [5] M. Stelter, H. Bombach, Process optimization in copper electrorefining, Advanced Engineering Materials 6 (7), 558-562 (2004).
  • [6] C.M. Julio, D. Hocine, G. Edward, Anodic behaviour of copper electrodes containing arsenic or antimony as impurities, Journal of Applied Electrochemistry 19, 777-783 (1989).
  • [7] M.S. Moats, Electrochemical characterization of anode passivation mechanisms in copper electrorefining, The University of Arizona (1998).
  • [8] J.B. Hiskey, X. Cheng, M.S. Moats, et al., Mechanistic studies on electrochemical passivation of commercial copper anodes, Electrochemistry in Mineral and Metal Processing 4, 439-456 (1996).
  • [9] M. Palaniappa, M. Jayalakshmi, P.M. Prasad, et al., Chronopotentiometric studies on the passivation of industrial copper anode at varying current densities and electrolyte concentrations, International Journal of Electrochemical Science 3, 452-461 (2008).
  • [10] L. Pajdowski, The influence of andoe passivation on the quality and structure of cathode copper, Eleomchirnica Aria 22, 1249-1253 (1977).
  • [11] A. Sridhara, Copper refining electrolyte and slime processing-emerging techniques, Advanced Materials Research 828, 93-115 (2014).
  • [12] E.N. Petkova, Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper, Hydrometallurgy 46, 277-286 (1997).
  • [13] J.B. Hiskey, Mechanisms and thermodynamics of floating slime formation, Chen T.T. Honoraiy Symposium on Hydrometallurgy, Hectrometalluigy and Materials Characterization, 101-112 (2012).
  • [14] J. Hait, R.K. Jana, S.K. Sanyal, Processing of copper electrorefining anode slime: a review, Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C) 118 (4), 240-252 (2009).
  • [15] X.W. Wang, Q.Y. Chen, Z.L. Yin, et al., The role of arsenic in the homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte, Hydrometallurgy 108, 199-204 (2011).
  • [16] F.X. Xiao, D. Cao, J.W. Mao, et al. Role of Sb(V) in removal of As, Sb and Bi impurities from copper electrolyte, Transactions of Nonferrous Metals Society of China 23, 271-278 (2013).
  • [17] S. Jafari, M. Kiviluoma, T. Kalliomaki, et al., Effect of typical impurities for the formation of floating slimes in copper electrorefining, International Journal of Mineral Processing 168, 109-115 (2017).
  • [18] W.Z. Zeng, L.F. Michael, S.J. Wang, Studies of anode slime sintering/coalescence and its effects on anode slime adhesion and cathode purity in copper electrorefining, Journal of The Electrochemical Society 163, 14-31 (2016).
  • [19] G. Sebahattin, G. Orhan, C. Arslan, et al., Copper refining electrolysis at high current densities, The Bulletin of the Istanbul Technical University 54 (2), 40-44 (2013).
  • [20] X. Cheng, J.B. Hiskey, Fundamental studies of copper anode passivation during electrorefining: part II Surface Morphology, Metallurgical Transactions B 27B, 610-616 (1996).
  • [21] X. Ling, Z.H. Gu, T.Z. Fahidy, Effect of operating conditions on anode passivation in the electrorefining of copper, Journal of Applied Electrochemistry 24, 1109-1115 (1994).
  • [22]R. Markovic, V. Krstic, B. Friedrich, et al., Electrorefining proces of the non-commercial copper anodes, Metals 11, 1187-1203 (2021).
  • [23] F. Noguchi, T. Nakamura, Y. Ueda, et al., Behavior of impurities in anode during copper electrorefining: effect of arsenic and oxygen, Journal of Mining and Metallurgical 104, 805-811 (1987).
  • [24] W. Christine, F. Andreas, Review of anode casting - Part II: Physical anode quality, World of Metallurgy 60 (2), 83-88 (2007).
  • [25] S. Abe, Y. Takasawa, Prevention of floating slimes precipitation in copper electrorefining, The Electrorefining and Winning of Copper, 87-98 (1987).
  • [26] F.G. Janaina, H.S. Luiz, T.F. Germano, The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media, Electrochimica Acta 76, 88-93 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384b48cf-64ed-4ab9-bcdc-3f8b7335e32f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.