PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of global ionosphere maps in view of ionospheric correction for coastal and inland altimetry: the case for average total electron content

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several low-Earth orbit (LEO) satellites are equipped with dual-frequency altimeters, theoretically scanning the entire ionosphere in the nadir direction. These two frequencies enable the determination of ionospheric delay and, thus, total electron content (TEC) below the satellite orbit. This information helps in altimetric range determination but is limited to sea and ocean areas. Therefore, global and local ionospheric models are needed for ionospheric corrections over coastal regions and lands. At the same time, altimetry-derived TEC is an important source of validation data for global navigation satellite system (GNSS)-TEC models over the oceans, where the number of GNSS stations is limited. This study compares the application of a high-resolution regional GNSS-TEC model determined from Precise Point Positioning and modeled by least-squares collocation (PPPLSC), and global ionosphere maps (GIMs), in the determination of ionospheric corrections along coastal altimetry tracks. The ionospheric delay values from 5 models are then compared with altimetry-derived TEC from 3 satellites, in the region of southeastern Asia, during a time of moderate TEC values and solar conditions. The reason for the choice of area is that altimetric observations from coastal zones meet difficulties related to atmospheric corrections, e.g., ionospheric correction, which can be affected by the land in the altimeter footprint. For this reason, along with the rapid progress of inland satellite hydrology, we are encouraged to study the consistency of ionospheric delays in coastal regions. The study shows overall discrepancies of 30% of the entire ionospheric delay, which is 2-3 cm even in the case of 35 TEC unit (TECU = 1016 el/m2) values. For this reason, in the case of increased solar activity, the GIMs can have even less TEC consistency with the altimetry-derived TEC, resulting from different orbital altitudes, data gaps, and modeling techniques. The GIMs, modeled by low-order spherical harmonics, have particularly low resolution and do not represent well the equatorial ionization anomaly (EIA).
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering
  • University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering
  • University of Warmia and Mazury in Olsztyn, Faculty of Geodesy, Geospatial and Civil Engineering
autor
  • Wuhan University, School of Geodesy and Geomatics
Bibliografia
  • Andersen O.B., Scharroo R., 2011, Range and geophysical corrections in coastal regions: and implications for mean sea surface determination, [in:] Coastal Altimetry, S. Vignudelli, A. Kostianoy, P. Cipollini, J. Benveniste (eds)., Springer, Berlin, Heidelberg, 103-145, DOI: 10.1007/978-3-642-12796-0_5.
  • Alizadeh M.M., Schuh H., Todorova S., Schmidt M., 2011, Global ionosphere maps of VTEC from GNSS, satellite altimetry, and formosat-3/COSMIC data, Journal of Geodesy, 85, 975-987, DOI: . 10.1007/s00190-011-0449-z.
  • Azpilicueta F., Brunini C., 2009, Analysis of the bias between TOPEX and GPS vTEC determinations, Journal of Geodesy, 83, 121-127, DOI: 10.1007/s00190-008-0244-7.
  • Biancamaria S., Lettenmaier D.P., Pavelsky T.M., 2016, The SWOT mission and its capabilities for land hydrology, Surveys in Geophysics, 37, 307-337, DOI: 10.1007/s10712-015-9346-y.
  • Bilitza D., Koblinsky C., Beckley B., Zia S., Williamson R., 1995, Using IRI for the computation of ionospheric corrections for altimeter data analysis, Advances in Space Research 15(2), 113-119, DOI: 10.1016/S0273-1177(99)80032-5.
  • Chen P., Liu H., Ma Y., Zheng N., 2020, Accuracy and consistency of different global ionospheric maps released by IGS ionosphere associate analysis centers, Advances in Space Research, 65 (1), 163-174, DOI: 10.1016/j.asr.2019.09.042.
  • Dettmering D., Limberger M., Schmidt M., 2014, Using DORIS measurements for modeling the vertical total electron content of the Earth’s ionosphere, Journal of Geodesy, 88, 1131-1143, DOI: 10.1007/s00190-014-0748-2.
  • Dettmering D., Schwatke C., 2022, Ionospheric corrections for satellite altimetry - impact on global mean sea level trends, Earth and Space Science, 9 (4), DOI: 10.1029/2021EA002098.
  • Fernandes M., Lázaro C., Nunes A., Scharroo, R, 2014, Atmospheric corrections for altimetry studies over inland water, Remote Sensing, 6 (6), 4952-4997, DOI: 10.3390/rs6064952.
  • Fu L., Cazenave A, 2001, Satellite altimetry and earth sciences: a handbook of techniques and applications, San Diego: Academic Press, 460 pp.
  • Hernández-Pajares M., Juan J., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S., Krankowski A., 2009, The IGS VTEC maps: a reliable source of ionospheric information since 1998, Journal of Geodesy, 83 (3-4), 263-275, DOI: 10.1007/s00190-008-0266-1.
  • Hernández-Pajares M., Roma-Dollase D., Krankowski A., García-Rigo A., Orús-Pérez R., 2017, Methodology and consistency of slant and vertical assessments for ionospheric electron content models, Journal of Geodesy, 91, 1405-1414, DOI: 10.1007/s00190-017-1032-z.
  • Jarmołowski W., Ren X., Wielgosz P., Krypiak-Gregorczyk A., 2019, On the advantage of stochastic methods in the modeling of ionospheric total electron content: South-East Asia case study, Measurement Science and Technology, 30 (4), DOI: 10.1088/1361-6501/ab0268.
  • Komjathy A., Born G.H., 1999, GPS-based ionospheric corrections for single frequency radar altimetry, Journal of Atmospheric and Solar-Terrestrial Physics, 61 (16), 1197-1203, DOI: 10.1016/S1364-6826(99)00051-6.
  • Komjathy A., Sparks L., Wilson B.D., Mannucci A.J., 2005, Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms, Radio Science, 40 (6), DOI: 10.1029/2005RS003279.
  • Krypiak-Gregorczyk A., Wielgosz P., Jarmołowski W., 2017, A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps, Measurement Science and Technology, 28 (4), DOI: 10.1088/1361-6501/aa58ae.
  • Li F., Parrot M., 2007, Study of the TEC data obtained from the DORIS stations in relation to seismic activity, Annals of Geophysics, 50 (1), 39-50, DOI: 10.4401/ag-3086.
  • Li X.X., Ge M.R., Zhang H.P., Wickert J., 2013, A method for improving uncalibrated phase delay estimation and ambiguity fixing in real-time precise point positioning, Journal of Geodesy, 87, 405-416, DOI: 10.1007/s00190-013-0611-x.
  • Orús R., Hernández-Pajares M., Juan J., Sanz J., 2005, Improvement of global ionospheric VTEC maps by using kriging interpolation technique, Journal of Atmospheric and Solar-Terrestrial Physics, 67 (16), 1598-1609, DOI: 10.1016/j.jastp.2005.07.017.
  • Roma-Dollase, D., Hernández-Pajares M., Krankowski A., Kotulak K., Ghoddousi-Fard R., Yuan Y., Li Z., Zhang H., Shi C., Wang C., Feltens J., Vergados P., Komjathy A., Schaer S., Garcis-Rigo A., Gomez-Cama J., 2018, Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle, Journal of Geodesy, 92, 691-706, DOI: 10.1007/s00190-017-1088-9.
  • Ren X., Chen J., Li X., Zhang X., Freeshah M., 2019, Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers, GPS Solutions, 23, DOI: 10.1007/s10291-019-0904-5.
  • Schaer S., Beutler G., Rothacher M., Springer T.A., 1996, Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center, [in:] Proceedings of the IGS AC workshop, Silver Spring, MD, USA, 181-192, available online at https://mediatum.ub.tum.de/doc/1365743/254480.pdf.
  • Tang J., Yao Y., Zhang L., Kong J., 2015, Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data, Scientific Reports, 5, DOI: 10.1038/srep13042.
  • Tseng K.H., Shum C.K., Yi Y., Dai C., Lee H., Bilitza D., Komjathy A., Kuo C.Y., Ping J., Schmidt M., 2010, Regional validation of Jason-2 dual-frequency ionosphere delays, Marine Geodesy, 33, 272-284, DOI: 10.1080/01490419.2010.487801.
  • Wielgosz, P., Milanowska, B., Krypiak-Gregorczyk A., Jarmołowski W., 2021, Validation of GNSS-derived global ionosphere maps for different solar activity levels: case studies for years 2014 and 2018, GPS Solutions, 25, DOI: 10.1007/s10291-021- 01142-x.
  • Yan Z., Zheng W., Wu F., Wang C., Zhu H., Xu A., 2022, Correction of atmospheric delay error of airborne and spaceborne GNSS-R sea surface altimetry, Frontiers in Earth Science, 10, DOI: 10.3389/feart.2022.730551.
  • Yasukevich Y.V., Afraimovich É.L., Palamarchuk K.S., Tatarinov P.V., 2009, Testing of the international reference ionosphere model using the data of dual-frequency satellite altimeters “Topex”/”Poseidon” and “Jason-1”, Radiophysics and Quantum Electronics, 52 (5-6), DOI: 10.1007/s11141-009-9137-8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-384b4878-f6ae-43ee-a7b7-8eb0a2b8b5cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.