PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of Optical, Electronic and Microstructural Properties of PET by 150 keV Cs+ Irradiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thick (0.125 mm) sheet samples of PET were irradiated with 150 keV Cs+ ion beam with fluences in the range from 10^13 cm^-2 up to 10^16 cm^-2). Raman and UV-VIS spectroscopy measurements shown destruction of numerous bonds within the polymer – this effect intensifies with fluence. Raman spectroscopy shows the presence of amorphous graphitelike structures as the broad G band appears in the collected spectrum. The analysis of absorbance spectra also confirms formation of numerous carbon clusters leading to a formation of vast conducting structures in the modified layer of the polymer. One can observe the decrease of optical bandgap from 3.85 eV (typical for pristine PET) to 1.05 eV for the sample implanted with the highest fluence, the effect is weaker than for lighter alkali metal ions. The estimated average number of C atom in a clusters reaches in such case values close to 1100. The changes in the polymer structure lead to intense reduction of electrical sheet resistivity of the modified samples by ~ 8 orders of magnitude in the case of severely modified sample. The dependence of resistivity on temperature has also been measured. The plots of ln(σ) vs 1/T show that band conductivity or nearest neighbor hopping between conducting structures prevail in the considered case
Twórcy
  • Institute of Physics,Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
autor
  • Institute of Physics,Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics,Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics,Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics,Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
  • 1. Kosobrodova E., Kondyurin A., Chrzanowski W., McCulloch D.G., McKenzie, D.R., Bilek, M.M. Optical properties and oxidation of carbonized and cross-linked structures formed in polycarbonate by plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2014; 329: 52–63.
  • 2. Charrier J.M. Polymeric Materials and Processing: Plastics, Elastomers, and Composites; Carl Hanser Verlag GmbH & Co, Munich, 1991.
  • 3. Du W., Slaný M., Wang X. Chen G., Zhang J. The inhibition property and mechanism of a novel low molecular weight zwitterionic copolymer for improving wellbore stability. Polymers. 2020; 12: 708.
  • 4. Akhtar A.N., Murtaza G., Shafique M.A., Haidyrah A.S. Effect of Cu Ions Implantation on Structural, Electronic, Optical and Dielectric Properties of Polymethyl Methacrylate (PMMA) Polymers. 2021; 13: 973.
  • 5. Allayarov S.R., Olkhov Y.A., Dixon D.A., Allayarov R.S. Influence of Accelerated Protons on the Molecular–Topological Structure of Polyethylene, High Energy Chem. 2020; 54: 368–373.
  • 6. Pirker L., Krajnc A.P., Malec J., Radulovi´c V., Gradišek A., Jelen A., Remškar M., Mekjavic I.B., Kovac J., Mozetic M. et al. Sterilization of polypropylene membranes of facepiece respirators by ionizing radiation. J. Membr. Sci. 2020; 619: 118756.
  • 7. Tyutnev A.P., Saenko V.S., Zhadov A.D., Abrameshin D.A. Theoretical Analysis of the Radiation-Induced Conductivity in Polymers Exposed to Pulsed and Continuous Electron Beams, Polymers. 2020; 12: 628.
  • 8. Przybytniak G., Kornacka E.M., Mirkowski K., Walo M., Zimek Z. Functionalization Of Polymer Surfaces By Radiation-Induced Grafting, Nukleonika. 2008; 53(3): 89–95.
  • 9. Obilor A.F., Pacella M., Wilson A., Silberschmidt V.V. Micro-texturing of polymer surfaces using lasers: a review, The International Journal of Advanced Manufacturing Technology. 2022; 120: 103–135.
  • 10. Wu Y., Zhang T., Liu A., Zhang X., Zhou G. The modification behaviour for Si implanted PET, Science in China E. 2003; 46: 125.
  • 11. Dhillon R.K., Singh P., Gupta S.K., Singh S., Kumar R. Study of high energy (MeV) N6+ ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2013; 301: 12–16.
  • 12. Cinan Z.M., Erol B., Baskan T., Mutlu S., Savaskan Yilmaz S. Yilmaz A.H. Gamma Irradiation and the Radiation Shielding Characteristics For the Lead Oxide Doped the Crosslinked Polystyreneb-Polyethyleneglycol Block Copolymers and the Polystyrene-b-Polyethyleneglycol-Boron Nitride Nanocomposites, Polymers. 2021; 13: 3246.
  • 13. Guenther M., Gerlach G., Suchaneck G., Sahre K., Eichhorn K.J., Wolf B., Deineka A., Jastrabik L. Ion beam induced chemical and structural modification in polymers Surf. Coat. Technol. 2002; 158–159: 108–113.
  • 14. Rai V., Mukherjee C., Jain B. UV-Vis and FTIR spectroscopy of gamma irradiated polymethyl methacrylate, Indian J. Pure Appl. Phys. 2017; 55: 775–785.
  • 15. Popok V. Ion implantation of polymers: Formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 2012; 30: 1–26.
  • 16. Mikšová R., Macková A., Pupikova H., Malinský P., Slepicka, P., Švorˇcík, V., Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2017; 406: 199–204.
  • 17. Goyal P.K., Kumar V., Gupta, R., Mahendia S., Kumar S. Modification of polycarbonate surface by Ar+ ion implantation for various opto-electronic applications. Vacuum. 2012; 86: 1087–1091.
  • 18. Sharma A., Chawla M., Gupta D., Bura M., Shekhawat, N. Aggarwal, S. Low energy B+ implantation induced optical and structural characteristics of aliphatic and aromatic polymers. Vacuum. 2019; 159: 306–314.
  • 19. Morozov I.A., Mamaev A.S, Osorgina I.V., Lemkina L.M., Korobov V.P., Belyaev A.Y., Porozova S.E.,. Sherban,M.G., The modification behaviour for Si implanted PET. Structural-mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N+2 implantation, Mater. Sci. Eng. C 2016; 62: 242–248.
  • 20. Bilek M.M., Kondyurin A., Dekker S., Steel B.C., Wilhelm R.A., Heller R., McKenzie D.R., Weiss A.S., James M., Möller W. Depth-resolved structural and compositional characterization of ionimplanted polystyrene that enables direct covalent immobilization of biomolecules., J. Phys. Chem. C. 2015; 119: 16793–16803.
  • 21. Nenadović M., Potocnik J., Ristić M., Strbac S., Rakocević Z. Surface modification of polyethylene by Ag + and Au + ion implantation observed by phase imaging atomic force microscopy Surface and Coatings Technology. 2012; 206: 4242–4248.
  • 22. Kavetskyy T., Iida K., Nagashima Y., Kuczumow A., Šauša O., Nuzhdin V., Valeev V., Stepanov A.L. High-dose boron and silver ion implantation into PMMA probed by slow positrons: Effects of carbonization and formation of metal nanoparticles, J. Phys.: Conf. Ser. 2017; 791: 012028.
  • 23. Djebara M., Stoquert J.P., Abdesselam M., Muller D., Chami A.C. FTIR analysis of polyethylene terephthalate irradiated by MeV He+, Nucl. Instr. Meth. 2012; B274: 70–77.
  • 24. Goyal P.K., Kumar V., Gupta R., Mahendia S., Kumar S. Change in the Electrical Conductivity of N+ Ion Implanted Polycarbonate, Advances in Applied Science Research. 2011; 2(3): 227–231.
  • 25. Kumar R., Goyal M., Sharma A., Aggarwal S., Sharma A., Kanjilal D. Effect of 200 keV Ar+ implantation on optical & electrical properties of polyethyleneterepthalate (PET), AIP Conf. Proc. 2015; 1661: 110010-1.
  • 26. Sant’Ana P.L., Ribeiro J.R., da Cruz N.C., Rangel E.C., Durrant S.F., Costa Botti L.M., Rodrigues Anjos C.A., Azevedo S., Teixeira V., Silval C.I., Carneiro J., Medeiros E.A., de Fátima Soares N.F., Nanomed Nanotechnol. 2018; 3(3): 000145.
  • 27. Chawla M., Rubi R., Kumar R., Sharma A., Aggarwal S., Kumar P., Kanjilal D. Tailoring Structural Properties of Polyethylene Terephthalate (PET) by 200 keV Ar+ Implantation. Advanced Materials Research. 2013; 665: 221–226.
  • 28. Bocz K., Ronkay F., Decsov K.E., Molnár B., Marosi G., Application of low-grade recyclate to enhance reactive toughening of poly(ethyleneterephthalate), Polymer Degradation and Stability. 2021; 185: 109505.
  • 29. Gohs U., Böhm R., Brünig H., Fischer D., Häussler L., Kirsten M., Malanin M.,. Müller M.-T, Cherif C., Wolz D.S.J., Jäger H. Electron beam treatment of polyacrylonitrile copolymer above the glass transition temperature in air and nitrogen atmosphere, Radiation Physics and Chemistry. 2019; 156: 22–30.
  • 30. Droździel A., Turek M., Pyszniak K., Prucnal S., Luchowski R., Grudziński W., Klimek-Turek A., Partyka J., Modification of optical and electrical properties of PET foils by He+, Ne+ and Ar+ implantation, Acta Physica Polonica A. 2017; 132(2): 264–269.
  • 31. Turek M., Droździel A., Pyszniak K., Luchowski R., Grudziński W., Klimek-Turek A.. Modification of PET Polymer Foil by Na+ Implantation Acta Physica Polonica A. 2019; 136(2): 278–284.
  • 32. Turek M., Drozdziel A., Pyszniak K., Grudziński W., Klimek-Turek A. Modyfikacja właściwości folii PET przy wykorzystaniu naświetlania jonami K+ (in Polish) Przegląd Elektrotechniczny. 2020; 96(8): 151–155.
  • 33. Turek M., Drozdziel A., Pyszniak K., Prucnal S. Versatile plasma ion source with an internal evaporator, Nucl. Instr. Meth. B. 2011; 269: 700–707.
  • 34. Turek M., Drozdziel A., Pyszniak K., Prucnal S., Zuk J. Źródło jonów z parownikiem ogrzewanym przez wyładowanie łukowe. Symulacje komputerowe i eksperyment (in Polish). Przegląd Elektrotechniczny 86(7), 2010, 193–196
  • 35. Ziegler J. F., Ziegler M. D., Biersack J. P., The Stopping and Range of Ions in Mater Nucl. Instr. Meth. B. 2010; 268: 1818–1823.
  • 36. Sviridov D.V. Chemical aspects of implantation of high-energy ions into polymeric materials Russian Chemical Reviews. 2002; 71(4): 315–327.
  • 37. Arif S., Rafique M. S., Saleemi F., Sagheer R., Naab F., Toader O., Mahmood A., Rashid R., Mahmood M. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA, Nucl. Instr. Meth. B. 2015; 358: 236–244.
  • 38. Nouh S.A., Abdul-Salem M.H., Ahmed Morsy A. Electrical, optical and structural behaviour of fast neutron-irradiation-induced CR-39 SSNTD Radiat. Meas. 2003; 37(1): 25–29.
  • 39. Gupta S., Choudhary D., Sarma A., Study of carbonaceous clusters in irradiated polycarbonate with UV–vis spectroscopy, J. Polym. Sci. B: Polym. Phys. 2000; 38(12): 1589–1594.
  • 40. Wang Y., Mohite S.S., Bridwell L.B., Giedd R.E., Sofield C.J. Modification of high temperature and high performance polymers by ion implantation, J. Mater. Res. 1993; 8: 388–402.
  • 41. Komarov F.F., Leontyev A.V., Grigoryev V.V. Electrophysical properties of organic materials irradiated with accelerated ions Nucl. Instrum. Meth. Phys. Res. B. 2000. 166–167: 650–654.
  • 42. Chen T., Yao S., Wang K., Wang H., Zhou S. Modification of the electrical properties of polyimide by irradiation with 80 keV Xe ionsSurf. Coat. Technol. 2009. 203(24): 3718–3721.
  • 43. Popok V.N., Karpovich I.A., Odzhaev V.B., Sviridov D.V. Structure evolution of implanted polymers: Buried conductive layer formation Nucl. Instrum. Meth. Phys. Res. B. 1999; 148(1–4): 1106–1110.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38491af0-7cb4-44fd-af15-fe4b02033bf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.